Lemma: Suppose E is mansmuble, $m(E)<o o$. Let $\varepsilon>0$.
There is a containers ferctico φ such that

$$
m\left(x_{E}+\varphi\right)<\varepsilon .
$$

Pf: Let A be a finite union of intends such that $m(A A E)<\varepsilon / 2$.
Let $\psi=X_{A}$, so m $\left(\psi \neq X_{E}\right)<\varepsilon / 2$,
Let φ be a continues faction swell that $m(\varphi \neq \psi)<\varepsilon / r$. Thu φ suffices

Tun (Bowel)
Suppose $f:[a, b] \rightarrow \overline{\mathbb{R}}, 13$ masumble and farce ane. Given $\varepsilon>0$ thea is a contrumers function g with $m(|f-g|>\varepsilon)<\varepsilon$.
Pf: Because $m(|f|=\infty)=0$, cortunct from above implies the exists K witt in $(|f| \geqslant k)<\frac{\varepsilon}{2}$. Let $f_{k}=\max (\min (f, k),-k)$.
Let $\varphi=\sum_{n=1}^{N} a_{n} X_{E_{n}}$ be a simple function with $\left|\varphi-f_{c}\right|<\varepsilon$ on $[0, b]$.

$$
\begin{aligned}
& \{|f|=\infty\}=\prod_{n=1}^{\infty}\{|f| \geqslant n\} \\
& \ln (\{|f|=\infty\})=\lim _{n \rightarrow \infty} \operatorname{mn}(\{|f|>n\})
\end{aligned}
$$

For each n let g_{n} be a cortumas function that equals $X_{E_{n}}$ except on a set of message no more then $\varepsilon / 2 N^{\circ}$
Then $g=\sum_{n=1}^{N} a_{n} g_{n}$ satisfies $n(\{g \neq \varphi\})<\frac{\varepsilon}{2}$.
Now.

$$
\begin{aligned}
& \left\{|g-f|>\{ \} \subseteq\{|f| \geqslant k\} \cup \bigcup_{n=1}^{N}\left\{g_{n} \neq X_{E_{n}}\right\}\right. \\
& \text { and } \quad \text { m }\left(\{|g-f|>\varepsilon)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\right.
\end{aligned}
$$

Integration:
A simple fiction $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is integubles if

$$
m(\varphi \neq 0)<\infty,
$$

Note $\varphi^{-1}(\{0\}) \neq \phi$

$$
\begin{aligned}
\varphi=\sum_{k=0}^{n} a_{k} X_{E_{k}} \quad & E_{k}=\varphi^{-1}\left(\left\{a_{k}\right\}\right) \\
& a_{0}=0 \\
& \{\underbrace{a_{1}}_{\left.0, a_{1}, \ldots, a_{1}\right\}}\}
\end{aligned}
$$

disjoint
Def: $I(\varphi)=\sum_{k=0}^{n} a_{k} m\left(E_{k}\right) \quad 0 \cdot \omega=0$

Execise: Integuble simple fuctions form a veetor spure.

$$
L_{9} u_{n}(f \neq 0)<\infty
$$

Goul: I is linewr on the integrable surple fonctions.
Lenna: If $\varphi=\sum_{k=1}^{n} b_{k} X_{E_{k}}$ where each E_{k} is measuable, $m\left(E_{k}\right)<\infty$ and the sets E_{k} are d. s jount than

$$
I(\varphi)=\sum_{k=1}^{n} b_{k} m\left(E_{k}\right)
$$

Pf: Obsere furst that φ is sumple and integable, so $I(C)$
is defined. Without loss of gereully we can ass one the $b_{k}=0$ for sure k and $U E_{k}=\mathbb{R}$.

Then

$$
\left.I(\varphi)=\sum_{a \in \mathbb{R}} a m(\xi \varphi=a)\right) .
$$

For an a $\in \mathbb{R}$

$$
\begin{aligned}
m(\{\varphi=a\}) & =m\left(\bigcup_{b_{k}=a} E_{k}\right) \quad \text { disjoint! } \\
& =\sum_{b_{k}=a} m\left(E_{k}\right),
\end{aligned}
$$

Hance $I(\varphi)=\sum_{a \in \mathbb{R}} \sum_{b_{k}=a} b_{k} m\left(E_{k}\right)=\sum_{k=1}^{n} b_{k} m\left(E_{k}\right)$

Prop: If φ and ψ are simple and integuble then

$$
\begin{aligned}
& I(c \varphi)=c I(\varphi) \text { and } \\
& I(\varphi+\psi)=I(\varphi)+I(\psi) . \\
& (I \text { is linear! })
\end{aligned}
$$

PF: Scalar multiplication is an excise.
Let $\varphi=\sum_{i=1}^{n} a_{i} X_{E_{-i}}$ ad $\psi=\sum_{j=1}^{m} b_{j} X_{F_{j}}$
in stander form.
Let $A_{i j}=E_{i} \cap F_{j}$. Observe that the sets
A.5 are dis joint. Moreover

$$
\begin{aligned}
& E_{i}=\bigcup_{j=1}^{M} A_{i j} \\
& F_{j}=\bigcup_{i=1}^{n} A_{i j} .
\end{aligned}
$$

Then_ $I\left(\varphi_{+} \psi\right)=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{i}+b_{j}\right)_{m}\left(A_{i j}\right)$ $\operatorname{since} \varphi+7=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{i}+b_{j}\right) X_{A_{i s}}$.

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} m\left(A_{i j}\right)+\sum_{j=1}^{m} \sum_{i=1}^{n} b_{j} m\left(A_{i j}\right) \\
& =\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{m} m\left(A_{i j}\right)\right)+\sum_{j=1}^{m} b_{j}\left(\sum_{i=1}^{n} m\left(A_{i j}\right)\right) \\
& =\sum_{i=1}^{n} a_{i} m\left(E_{i}\right)+\sum_{j=1}^{n} b_{j} m\left(F_{j}\right)
\end{aligned}
$$

$$
=I(\varphi)+I(\psi)
$$

Cor: If $E_{i} i=1, \ldots, n$ ne measurable sets with finite measure then $\varphi=\sum_{i=1}^{n} a_{i} X_{E_{i}}$ is supple and mensurable and

$$
I(\varphi)=\sum_{i=1}^{n} a_{i} m\left(\varepsilon_{i}\right)
$$

Pf: This is a consequice of linearity once we establish $I\left(X_{E_{1}}\right)=m\left(I_{1}\right)$.
The standend neprepsertation of

$$
X_{E_{i}}=0 \cdot X_{E_{i}^{c}}+1 \cdot X_{E_{i}}
$$

and hace, by defaction

$$
\begin{aligned}
I\left(X_{E_{i}}\right) & =0 \cdot m\left(E_{i}^{c}\right)+1 \cdot m\left(E_{i}\right) \\
& =m\left(E_{i}\right)
\end{aligned}
$$

Lenma: If φ is intesubbe and sinple ad

$$
\varphi \geqslant 0 \text { a.e. then } I(\varphi) \geqslant 0 \text {. }
$$

Pf: $\varphi=\sum_{k=0}^{n} a_{k} X_{E_{k}}$ where wherver $a_{k}<0, m_{n}\left(E_{E}\right)=0$, Thus $I(e)=\sum_{k=0}^{n} a_{k} m\left(E_{t}\right) \geqslant 0$.

Cor: If φ and ψ are simple and interouble and $\varphi \leq \psi$ a.e. then

$$
I(\varphi) \leqslant I(\psi)
$$

Pf: Obscure $\psi-\varphi \geqslant 0$ are.
So by the lemma

$$
I(\psi-\varphi) \geqslant 0 .
$$

Bat by linearity $I(\psi-\varphi)=I(\psi)-I(\varphi)$ so

$$
I(\psi) \geqslant I(\varphi)
$$

