$f^{-1}((a, \infty)) \in \mathcal{M}$ $f^{-1}((a, b)) \in \mathcal{M}$

f is measurble of f'(B) EM & borel-set B.

Examples: 1) continuous functions f (open) = open 2) stop functions [a,6] f'((a, oo)) > Luitor of Anterals

upper sensition times
$$f^{-1}((u, \omega))$$
 is open
If $N \subseteq \mathbb{R}$ is null
and $f:N \supseteq \mathbb{R}$
then f is meanswille.
 $f^{-1}(A) \subseteq N$ and is mean.
If f is means and $g = f$ except or a null
set N then g is meanswille.
 $f = g$ almost
Ef $f = g$ almost
 $E_{f} = F_{g}$

moureuble?

 $E_{f} \land E_{g} \leq N$

Exercise: If f:D>R is mersonale and EED 3 mensuable then $f|_{f}$ is mensuable.

This The masurable real-valued functions on a mensurable set DSR forma vector space nel noneover as algebra. i.e. if f,g: 1) - R are meusurable

they so are;

Eercise: 1)

Hand work: 2)

Wart Zf+g>a3 to be measurble.

 $f(x) + g(x) > \alpha \xrightarrow{} f(x) > \alpha - g(x)$

\$ JreQ $f(x) > r > \alpha - g(x)$ 2f+g>x3= U 2f>v3/2r>d-g3 req V & g > x - v 3 So 2ftg 2x3 is a countable union of measurable sets and is measurable,

To teckle fig is measurable first start f.f=f^z is measurable. with \[
 \frac{2}{5} = \frac{2}{5} + \frac{3}{5} U \frac{2}{5} f < -5x \frac{3}{5}
 \]
 Meines
 \[
 meines
 \]
 Meines
 \[
 meines
 \]
</p>

 $(f+g)^2 = f^2 + g^2 + 2fg$

 $fg = \frac{1}{2}((f+g)^2 - f^2 - g^2)$

Given f,g measurable, h = max(f,g) is measorable.

mens

f, fr, ..., fyn all meus f= max (f, fz, ..., fn) is meas.

What about fi, fr, fz, ---fkles-k f = sup fn We'll work with extended verl-volved farctions f: D>R >> RUZ00, -003 Sach am f is mens if $f^{-1}((a, \infty))$ are muss value. ftg need not be defined for such faretions. "

f = sap fn cuel In is meas.

$$\begin{cases} f > \alpha \end{cases} = 0 \qquad \begin{cases} f > \alpha \end{cases} \\ u \end{cases}$$

Exercise: verify the above equality. In $f_{k} = -sap(-f_{k})$ is means of each f_{k} is.

Given a Lanctum
$$f: D \subseteq R \rightarrow R$$

 $f^{+} = mux(f, 0)$ $f^{+} \ge 0$
 $f^{-} = mux(-f, 0)$ $f^{-} \ge 0$
 $f = f^{+} - f^{-}$
If f is meas, so are f^{+}, f^{-} ,
 $If f^{+} = f^{+} + f^{-}$
 $|f| = f^{+} + f^{-}$
 $If f = f^{+} + f^{-}$

Exercise. Is the converse true!

If In 13 a seg of mens functions $\lim \sup_{n \to \infty} f_{y} = \inf f \sup_{n \neq 1} f_{m}$ For each n, this is mers. mensurable. lan int to 13 mensuable, I each for 13. If fn -> f poartuise and each fn is

mensurable then I is measurable.

) The procenture livert of masorable Severiors is masorable

Exercise: If In 13 a sequere of the messerable faretrang that conveges pointuise almost everywhere to : some I then I is mensorable

RIN Z for for fy) RU we news => f | R N B mas,

f:Do Risma

ESDIG mens

fly it neas.

$$f^{-1}((a, oo I) | N is moon.$$

 $f^{-1}((a, oo I) | N is mus k$

Esoroff: Suppose
$$D \subseteq \mathbb{R}$$
 is measurable and $m(D) < \infty$.
If $2f_n 3$ is a sequence of means functions conversing
pw a.e. to f then given $E > 0$ there exists a measurable set
 $E \subseteq D$ such that $m(D \setminus E) < E$ on $f_n = 3f$ on E .

Principles