This holds for all E>O 55 $m^{+}(\overset{\infty}{\bigcup}_{k=1}^{\infty}E_{k}) \leq \overset{\infty}{\underset{k=1}{\sum}} m^{+}(E_{k})$ un + (AOB) = m + (A) + 1 + K + (B) A, B disjour $m + (AOB) \leq un + (A) + un + (B)$ $m^{*}(AOB) \leq m^{*}(A) \perp m^{*}(B)$ A CIR How do we know if m+(A) is an "over estructe" $(\underbrace{-}, \underbrace{-}, \underbrace{-$

INA $m^{+}(I) = m^{+}(IAA) + m^{+}(IAA^{c})$ Def: A set ESR is measurable if for all bounded upon $m^{+}(I) = m^{+}(I \Lambda E) + m^{+}(I \Lambda E^{c})$ We'll call the test in the above definition cardition CC'

Exercise: Pour that bounded intervals are measurable. Preve tent ay intervals are messionable. INESE Exercise: Null sets are measurable. 05 m+ (INE) 5 m+(E) = E: nut set $m^{*}(I) = m^{*}(I/E) + m^{*}(I/E^{c})$ m+(I) 7 m+(IAE) + m+(IAE)

Prop'. A set $E \equiv iR$ is measurable if and only for all $A \equiv iR$ $m^{*}(A) \equiv m^{*}(A \land E) + m^{*}(A \land E^{c})$.	
	"Carathedory Cordition"
$Pf:$ One dénetuer is obvices ($CC \Rightarrow Cc'$).	
Supposes E 13 measurable. Let AER ad	$e \neq \varepsilon 7.0$
Pick a mensioner 2 In 3 for A	such that
$\left(\sum_{n=1}^{\infty} l(I_n)\right) \leq m^+(A) + \varepsilon.$. .
Observe	· ·

 $\sum_{h=1}^{\infty} \mathcal{L}(I_n) = \sum_{n=1}^{\infty} \left[m^* (I_n \Lambda E) + m^* (I_n \Lambda E^{\circ}) \right]$ $\sum_{n=1}^{\infty} m'(I_n \Lambda E) + \sum_{n=1}^{\infty} m'(I_n \Lambda E^c)$ $U(I_n \cap E)$ $m^{\dagger}\left(\bigcup_{n=1}^{\infty}\left(J_{n}\cap E^{\dagger}\right)\right) + m^{\dagger}\left(\bigcup_{n=1}^{\infty}\left(J_{n}\cap E^{\dagger}\right)\right)$ $n = \begin{pmatrix} 0 & I_{n} \\ 0 & I_{n} \end{pmatrix} \cap E$ > m+ (ANE) + m+ (ANE^c). 2 ANG $m^{+}(A) + \varepsilon = m^{+}(A \Lambda \varepsilon) + m^{+}(A \Lambda \varepsilon)$ Hence This is true for all E>D ml $m^{*}(A) > m^{*}(A \cap E) + m^{*}(A \cap E^{C})$ The nucle inequality follows fine such additionity induce about erection,

Def: (alt) A set E S IR is measurable if for all ASIR $m^{+}(A) = m^{+}(AAE) + m^{+}(AAE^{-}).$ Prap: Suppose EI, EZ are measurble, Then and dissount $m^{+}(E, UE_2) = m^{+}(F_1) + m^{+}(E_2)$ $Pf: m + (E, UE_{L}) = m + (E, UE_{L} \cap E_{L}) + m + (E, UE_{L} \cap E_{L})$ $= m \mathcal{A}(\mathcal{E}_{1}) + m \mathcal{A}(\mathcal{E}_{2}),$ Exercise: If eithe of Eor Fis measurable of thy are disjointy $m^{+}(EUF) = m^{+}(C) + m^{+}(F)$

· · · · · · · · · · · · · · · · · · ·
M_0 = $M_1 \in \mathcal{P}(\mathbb{R})$
mensionale sels.
intervals, rull sets.
Joal: expand lines greatly via set operations.
Def: An algebra of subsets of an abvert set A
Ba collection that is closed unle
Duinuice Unions
o provide intersections
e complements
$A_1 \in (P(A))$ $A \cap B = (A^{c} \cup B^{c})$ $A \cap B = (A^{c} \cup B^{c})$
(A) = (A) + (A)
$A^{c} \in \mathcal{A}^{c}$

Exercise: Algebras are closed under Livite Unions/inferentions
Def: A o-algeora is an algeon that is closed
under countrble unions (und herce also countrolde intersections).
e.g. Let Zi be the collection of subsets of
R that are either finite on have finite
complexent.
Algenne of functe and cofinite sets
$E_n = \xi_n 3 \qquad $
It is not a o-algebra.

We will show M is a o-alsebra.
Lasy M 13 closed vule couplinents.
Let EEM. We unit to show E ^c GM.
$m^{+}(A) = m^{+}(A \cap E^{c}) + m^{+}(A \cap (E^{c})^{c})$ L_{L} F_{E}
$E, F \in \mathcal{H}$ we wunt to show $EOF \in \mathcal{R}\mathcal{H}$
1 1

 $m + (A) = m + (A \cap (E \cup F)) + m + (A \cap (E \cup F))$ +m+ (ANE~) $m \neq (A \cap E) = m \neq (A \cap E \cap P)$ + m + (AAECAFC) $E' \Gamma F' = (E U F)^{C}$ $m^+(ANE^CNE^-) = m^+(AN(EUP)^-)$

	• •
$ An(EUF) m^{*}(An(EUF)) $	· · ·
= m*(AN(EUF)NE)	• •
+ m + (AN(EUF)NE)	• •
$= m^{\#}(A \cap E) + m^{\#}(A \cap F \cap E^{c})$	
	• •
· · · · · · · · · · · · · · · · · · ·	• •
	• •
	• •
<pre></pre>	· ·