for all $f \in \neq 7$.
Exe-cise: pointuise bauded + equich \Rightarrow
Unformly bounded,

Thm: Let X be compuct If $\not \subset \subseteq(X)$ is pointuise bounded and equicantinuais it is totally booded.
Thn (Arzela-Ascoli $)$
Let X be compuct. A subset $x \subset C(x)$ is conpuct If and anly if it is closed, pointuise boanded and equicontinuos.

Pf：Suppose 开 $\subseteq C(x)$ is pontwise bound and equiconticiais．
Let $\varepsilon>0$ ．Pick δ so if $d(x, z)<\delta,|f(x)-f(z)|<\frac{\varepsilon}{4}$
for all $f \in \notin$ Let x_{i}, \ldots, x_{k} be a δ－net for X ，which exists since $X_{i s}$ compact and hare totally bounded．
Peek M so that $\left|f\left(x_{k}\right)\right| \leqslant M$ for all $f \in$ Fr and
all $1 \leq k \leq K$ ．Let y_{1}, \cdots, y_{J} be a $\frac{\varepsilon}{4}$ net $\operatorname{for}[-M, \mu]$ ．
Let P be the set of functions fan n $\left\{x_{1}, \ldots, x_{k}\right\}$ to $\left\{y_{1}, \ldots\right.$, ，$\left.\}\right\}$－
There are J^{K} sech functions．
Gin $p \in P$ let $F_{p}=\left\{f \in F_{n}:\left|f\left(x_{k}\right)-p\left(x_{k}\right)\right|<\frac{\varepsilon}{4}: 1 \leq k \leq k\right\}$
O bserve $\bigcup_{p \in P} \mathcal{A}_{p}=\mp_{1} \quad\left(f \in \mathcal{F}_{1} \quad f\left(x_{k}\right) \in[-\mu, \mu]\right.$

$$
\left.\left|y_{j k}-f\left(x_{k}\right)\right|<\varepsilon_{4}\right)
$$

Pick $f, g \in \mathcal{F}_{p}$, Let $x \in X$. Pick x_{k} so that $d\left(x, x_{c}\right)<\delta$. $p\left(x_{c}\right)$
Then

$$
\begin{aligned}
&|f(k)-g(x)| \leqslant\left|f(x)-f\left(x_{k}\right)\right|+\left|f\left(x_{k}\right)-s\left(x_{k}\right)\right| \\
&+\left|g\left(x_{k}\right)-g(x)\right| \\
&<\frac{\varepsilon}{4}+\frac{\varepsilon}{2}+\frac{\varepsilon}{4}=\varepsilon
\end{aligned}
$$

since

$$
\begin{aligned}
\left|f\left(x_{c}\right)-g\left(x_{c}\right)\right| & \leqslant\left|f\left(x_{c}\right)-p\left(x_{k}\right)\right|+\left|p\left(x_{c}\right)-g\left(x_{c}\right)\right| \\
& <\frac{\varepsilon}{4}+\frac{\varepsilon}{4} .
\end{aligned}
$$

Hence $d\left(f_{g}\right) \leq \varepsilon$ and $\operatorname{dim}\left(x_{p}\right) \leq \varepsilon$ as well. This \mathcal{F}_{1} is totally banded.

Integration
Riemann Integral

$$
[a, b] \subseteq \mathbb{R} \quad a<b
$$

pantitiar: $\quad a=x_{0}<x_{1}<\cdots<x_{n}=b$
$P \rightarrow$ Since subset of $[a, b]$ Hat contuins the endpoints. Step function: Step $[a, b]$
$g \in$ Step $[a, b]$ if thee exists a partition P of $[a, b]$ such that 9 is constant on each interval $\left(x_{k-1}, x_{k}\right)$.

We call such a partition a stop partition for g.

$$
\int_{a}^{b} g \text { if } g \in \operatorname{Step}[s, b] \text {. }
$$

1) pick a step partition for g

$$
P \cdot a=x_{0}<x_{1}-\cdots<x_{n}=b
$$

2) Let $d x_{k}=x_{k}-x_{k-1} \quad 1 \leqslant k \leq n$
3) $\int_{a}^{P} g=\sum_{k=1}^{n} g_{k} d v_{k}$ whee g_{k} is the constant value of g on $\left(x_{k}, x_{k}\right)$,

This is indeperdat of the choice of step partition, How?

We sun P^{\prime} is a refinement of P if $P^{\prime} \geq P$,
If P_{1} and P_{2} are partition we call $P_{1} \cup P_{2}$ the common refine net of the two

$$
\int_{a}^{P_{1}} g=\int_{a}^{D_{L}} g
$$

$P_{1} \cup P_{2}$

$$
\int_{a}^{b} 9
$$

\rightarrow Exeruse: proof by induction on the size of

$$
P^{\prime}>P
$$

Properties:

* Erase 1) Linearity

2) Monotoridy $g_{1}, g_{2} \in \operatorname{Step}[a, b] \quad g_{1} \leqslant g_{2} \Rightarrow \int_{a}^{b} g_{1} \leqslant \int_{a}^{b} g_{2}$
3) $\left|\int_{c}^{b} g\right| \leqslant \int_{c}^{b} \lg \mid$
4) If $c \in(a, b)$ then

$$
\int_{a}^{b} g=\int_{a}^{c} g+\int_{c}^{b} g \quad \underbrace{\left.g \in \delta t_{p}\left[a d_{0}\right\}\right)}_{\left.g\right|_{[a, c]} \in \delta t_{c p}[a, c]}
$$

Monotariaty: Suppose $g \hat{g} \in$ Step $[a, b]$ and $g \leqslant \hat{g}$
Let P be a step partition fo- both g and \tilde{g} -
Then

$$
\begin{aligned}
& \text { Then } \int_{a}^{b} g=\sum_{k=1}^{n} g_{k} d x_{k} \leqslant \sum_{k=1}^{n} \hat{g}_{k} d x_{k}=\int_{a}^{b} \widehat{s}^{b} \\
& -|g| \leqslant g \leqslant|g| \quad g \in \operatorname{Stes}[a, b] \Rightarrow|g| \in \operatorname{Step}[a, b]
\end{aligned}
$$

$$
\begin{aligned}
& \int_{a}^{b}-|s| \leqslant \\
& -\int_{11}^{b}|s|
\end{aligned}
$$

$$
\left|\int_{0}^{b} g\right| \leq \int_{0}^{b}|s|
$$

