([0,1] -> compact subsets C(X) X is compact complete, totally bounded subsets closed bounded to totally bounded. (no Currely subsequence!) ty w2.2 $d(f_n, f_m) n \neq m$ 11-

Def A subset of G C(2) where X is a metric space
13 <u>equicontinuous</u> if for every £70 thre exists
570 so that if $x,y \in X$ with $d(x,y) < S$
Mer $ f(x) - f(y) \leq \varepsilon$ for all $f \in \mathcal{F}_{r}$.
Euch f m m equicontanuous simily is onitionly contantas
Equicontauly: one S works everywhere for all members of the family.
Not equic ontanaos: I 60>0 50 that for all 6>0

the exists sye & and fe Ti such that d(4,4)<8 but |f(4)-fy)>E. Bud E = ((0,17 Sun (1/2) ntl n Lip [9,6] lip functions

L ip $[a, b]$	$\rightarrow 1f(x)-f(y) \leq x \leq x-y $
	$E \neq O$ Pirk S SO KS < E Then if $f \in Lip_{k}$ [a,b] and if $x,y \in [a,b]$ with $ x-y \leq S$
	$ \lim_{K \to \infty} f(x) - f(y) \leq K x - y $ $ \leq K \leq $ $ \leq \mathcal{E} $

Boundedness and equic ortunity we in dependent. not bounded, not equicts boundal, not equicts $B_1(0)$ not bounded, equicits Lipk [0,1] bonded, equicts B, Los A Lipk Lo, I Equicontunity is necessary for a family of functures to be totally bounded. This Let X be a metric space. Every totally bouch subset Ti of C(x) is equicontancies,

Pf: Let ESO. Let finn, for le an gret for AI. Each fr in the not is uniformly continuery 50 the exists 6_{k} so that if $x, y \in x$ and $d(x, y) < S_{k}$ $|f_{k}(x) - f_{k}(y)| < \frac{\varepsilon}{2}.$ Let S= min Sky 50 &70. Suppose x,y E X al d(x,y)<S. Let f & Fr. Then there exists from in Ne ret so that $\|f - f_k\|_{\infty} < \frac{\varepsilon}{3}$. Then $|f(x) - f(y)| \le |f(x) - f_k(y)| + |f_k(x) - f_k(y)| + |f_k(y) - f(y)|$ ε_{13} + ε_{13} +

	\mathcal{E} .
We will see that	boundedness,+ equicontanuity => total boundedness
if X is compact	loo (uniform boundedress)
We will pre in faut	pointure bondedness & equicontinuity => total boundness
$\mathcal{F}_{1} \in \mathcal{C}(\mathcal{V})$	$\forall x \in X$ there exists M_X such that $ FGY \leq M_X$

for all f E Fi.
Exercise: pointwise bounded + equics =>
Un, formby bounded,
Thum: Let X be can f TO TO
pointwise bounded as $1 + \pi \leq C(X)$ is
Ti (1 1 1)
Int X be compart. A subset FCC(1) is compart
if and only if it is closed, pointuise bounded and equicontinuous.

P: set of functions fram 2×1,--, X.3 · · · · to 241,-, 453 -|P|=JKfunder X, -- , XK Given pep $\mathcal{F}_{p} = \{ \{ f \in \mathcal{F}_{1} : | f(x_{k}) - p(x_{k}) | \leq \epsilon \} \}$ dison (Fip) < E. Goal. An S () An