n-1 5 f = ak Hk [c=] 1-1 f(x) H 6 $X_{\Lambda} =$ 5 | k=l
3 0 k#l Xoz · · · E P[0,1] Hi, $\sqrt{\epsilon}$ j č

Since Pn(Zi) is a polyromial in Z, we are lore. Pf of lemma! For OEXEL define Po(x) = 0 and for k? 0, delue $P_{k+1}(x) = P_k(x) + \frac{x - P_k(x)}{z}$. We claum that for all K OSR(X) SJX ad that $R_{ki}(k) = P_k(k)$. This is doubles when k=0. Suppose this holds for some k. Then P_K(x) = P_K(x) + x - P_k(x) > P_k(x) > 0. Moreover: $P_{k+1}(x) = P_k(x) + Jx + P_k(k) \cdot (Jx - P_k(k))$

$\leq P_{k}(\omega) + \left(J_{X} - P_{k}(\omega) \right)$
$= \int \mathbf{x} \cdot \mathbf{r}$
The preaf that P(k+1)+1 = Pk+1 is now the sure
as the above.
The sequence of is bounded about and podrtuse
monotore increasing and there fore converses positivise to
a l'mit P. Moreover
$P(x) = \lim_{k \to \infty} P_{k+1}(x) = \lim_{k \to \infty} P_{k}(x) + \frac{x - (P_{k}(x))^{2}}{2}$
$= P(x) \perp (-(P(x))^{2})$

Sor each $x \in [0, 1]$ $P(x)^2 = x$ and suce $P(x) \ge 0$, P(x) = Jx. Since [0,1] is compact and some J. is continuous Divis theeren applies that the convegence is uniform. Trigonometric Poly nominuls $T(x) = a_0 + \sum_{k=1}^{n} a_k \cos(kx) + \sum_{k=1}^{n} b_k \sinh(kx)$ $----7 \qquad f \in C[-\pi,\pi]$ $T = \int (-\pi) = \int (-\pi) dx$

· · · · · · · · · · · · · · · · · · ·
CTT -> continues 2+1- periodae Sunctions on TR
Given FECETT and EDD Mare exists a tris polyuman [T
such that $ f(x) - T(x) < \varepsilon$ for all $x \in \mathbb{R}$.
1) The predect of trig polynomials is a Jurg polynomial $\sin(kx)\sin(m+) = \frac{1}{2}\left[\cos((k-m)x) - \cos((k+m)x)\right]$

2) If T is a trig polynamial then T(x-==)'s as well.
$sin(k(x-\Xi)) = sin(kx-\xiT)$
$= \begin{cases} \sin(kx) & k \equiv 0 \mod 4 \\ \cos(kx) & k \equiv 1 \mod 4 \\ -\sin(kx) & k \equiv 2 \mod 4 \\ -\cos(kx) & k \equiv 3 \mod 4 \end{cases}$
Lenna: Suppose $f \in C^{2\pi}$ is even. Then for all $e > 0$ Here exists a tris polynomial T such that $ f-T _{\infty} \leq e$.
$Pf:$ Consider for arccos: $[-1,1] \rightarrow R$. This is a continuing

function and thus the exists a polynomial op such that $(f \circ arcros)(\gamma) - p(\gamma) \leq \varepsilon$ for all $\gamma \in [-1, 1]$. But then f(accos(cos(x))) - p(cos(x)) < Efor all XE [-T, T]. Note that $\sigma rccos(cos(x)) = \begin{cases} x \in [\sigma, \pi] \\ -x \in [-\pi, \sigma] \end{cases}$ $= (\mathbf{x})_{\mathbf{0}}$ $f(|x|) - p(\cos(x)) < \varepsilon$ for all $x \in [-\pi\pi]$.

Since I is even and 277-periodic, f(x) - p(cos(x)) CE for all xER. Note that p (cos (x)) is a trig poly round. See text.