

$$
\hat{f}\left(x_{l}\right)=\sum_{k=1}^{1-1} f\left(x_{k}\right) H_{k}\left(x_{l}\right)=f\left(x_{l}\right)
$$

Lama! There exists a sequere $P_{k}(x)$ of polynands on $[0,1]$ convegus onitomly to \sqrt{x}.

Con: $a b s \in \overline{P[0,1]}$,
Pf: Let $\varepsilon>0$. Let P_{n} be a polynomial such that

$$
\left|\sqrt{x}-P_{n}(x)\right|<\varepsilon \text { for all } x \in[0,1] \text {. }
$$

Then if $z \in[-1,1], z^{2} \in[0,1]$ and

$$
\left|\sqrt{z^{2}}-P_{n}\left(z^{2}\right)\right|<\varepsilon \quad \text { for } a \| z \in[-1,1]
$$

That is, $\left||z|-P_{n}\left(z^{2}\right)\right|<\varepsilon$ for all $z \in[-11]$.

Since $P_{n}\left(z^{2}\right)$ is a polyronial in z, we are doe.
\square

Pf of lemma! For $0 \leqslant x \leqslant 1$ define $P_{0}(x)=0$ and for $k \geqslant 0$, delve

$$
P_{k+1}(x)=P_{k}(x)+\frac{x-P_{k}^{2}(x)}{2} .
$$

We clan that for all $k \quad 0 \leqslant p_{p}(x) \leqslant \sqrt{x}$ ad that $P_{k+1}(x) \geqslant P_{k}(x)$, This is obviceus when $k=0$. Suppose this holds for some k. Then

$$
P_{k+1}(x)=P_{k}(x)+\frac{x-P_{k}(x)^{2}}{2} \geqslant P_{k}(x) \geqslant 0
$$

Moreover: $P_{k+1}(x)=P_{k}(x)+\frac{\sqrt{x}+P_{k}(x)}{2} \cdot\left(\sqrt{x}-P_{k}(x)\right)$

$$
\begin{aligned}
& \leqslant P_{k}(x)+1 \cdot\left(\sqrt{x}-P_{k}(x)\right) \\
& =\sqrt{x} .
\end{aligned}
$$

The preen that $P_{(k+1)+1} \geqslant P_{k+1}$ is now the sue as the above.

The sequice P_{k} is bounded above and poartuise monotone moncusing and thee fore covers pocitwise to a lit P Moreover

$$
\begin{aligned}
P(x)=\lim _{k \rightarrow \infty} P_{k \mu}(x) & =\lim _{k \rightarrow \infty} P_{k}(x)+\frac{x-\left(P_{k}(x)\right)^{2}}{2} \\
& =P(x)+\frac{k-(P(x))^{2}}{2}
\end{aligned}
$$

So Sor euch $x \in[0,1] \quad P(x)^{2}=x \quad$ and
sure $P(x) \geqslant 0, \quad P(x)=\sqrt{x}$.
Sime $[0,1]$ is compuct and since \sqrt{r} is cortuinars,
Dini's thearan iuplies that the corvesace is unform.

Trigovemetre Poly nomiuls

$$
\begin{gathered}
T(x)=a_{0}+\sum_{k=1}^{n} a_{k} \cos (k x)+\sum_{k=1}^{n} b_{k} \sin \left(k_{x}\right) \\
\quad \begin{array}{l}
\pi \in C[-\pi, \pi] \\
-\pi(-\pi)=f(\pi)
\end{array}
\end{gathered}
$$

$C^{2 \pi} \rightarrow$ contunceis 2π-periodic functions on \mathbb{R}

Given $f \in C^{2 \pi}$ an $\varepsilon>0$ the exists a this nolyamainl T such that $|f(x)-T(x)|<\varepsilon$ for all $x \notin \mathbb{R}$.

1) The pradect of trig polyzonials is a tuning polyzonical:

$$
\sin (k x) \sin (m x)=\frac{1}{2}[\cos ((k-m) x)-\cos ((k+m) x)]
$$

2) If T is a trig polynomial then $T\left(4-\frac{\pi}{2}\right)$ is as well,

$$
\sin \left(k\left(x-\frac{\pi}{2}\right)\right)=\sin \left(k x-\frac{k \pi}{2}\right)
$$

$$
\longrightarrow=\left\{\begin{aligned}
\sin (k x) & k \equiv 0 \bmod 4 \\
\cos (k x) & k \equiv 1 \operatorname{mad} 4 \\
-\sin (k x) & k \equiv 2 \operatorname{mal} 4 \\
-\cos (k x) & k \equiv 3 \operatorname{mad} 4
\end{aligned}\right.
$$

Lena: Suppose $f \in C^{2 \pi}$ is even, Than for all $\varepsilon>0$ there exists a trim rolyionial T sum that $\| f-\left.T\right|_{\infty}<E$.

Pf: Consider foarcos: $[-1,1] \rightarrow \mathbb{R}$. This is a centimans
function and this the exits a polyranial Q such that $|(f \circ \operatorname{arcios})(y)-p(y)|<\varepsilon \quad$ for all $y \in[-1,1]$.

But than

$$
|f(\arccos (\cos (x)))-p(\cos (x))|<\varepsilon
$$

for all $x \in[-\pi, \pi]$. Note that

$$
\begin{aligned}
\arccos (\cos (x)) & =\left\{\begin{array}{c}
x \in[0, \pi] \\
-x \in[-\pi, 0]
\end{array}\right. \\
& =|x|_{0}
\end{aligned}
$$

So $\quad \mid f(|x|)-\rho \cos (x)) \mid<\varepsilon$ for all $x \in[-\pi, \pi]$.

Since f is even and 2π-percale,

$$
|f(x)-p(\cos (x))|<\varepsilon \quad \text { for all } x \in \mathbb{R}
$$

Note that $p(\cos (x))$ is a trig polymanial.

See text.

