$\forall_{x} \in X \quad f_{n}(x) \rightarrow f(x)$
\uparrow porituise corvesence

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

doos not not preserve contincity $\lim _{x \rightarrow x_{0}} \lim _{x \rightarrow \infty 0} f_{n}(x)$

$$
\begin{aligned}
\lim f f_{n} \ngtr \int \lim f_{n}=\int f & =\lim _{n \rightarrow \infty} \lim _{n \rightarrow \infty} f_{n}(\gamma) \\
& =\lim _{n \rightarrow \infty} f\left(x_{0}\right) \\
& =f\left(x_{0}\right)
\end{aligned}
$$

Def: Asequance $\left(f_{1}\right)$ of functions corvees uniformly to a function $f\left(f_{n} \rightarrow f, f_{n} \rightarrow f\right.$ aniformly $)$ if for all $\varepsilon>0$ the ne exists N so if $n \geqslant N$

Then for all $x \in X \quad d\left(f(x), f_{n}(x)\right)<\varepsilon$.
$f_{n}: x \rightarrow Y$
$\hat{\text { set }}^{\uparrow} \mathrm{T}_{\text {metric space }}$

$$
f_{n}(x)=x^{n} \text { on }[0,1]
$$

$f_{n} \rightarrow f$ onfoml?

$$
\begin{array}{r}
\varepsilon=\frac{1}{4} \\
N \quad \cap \geqslant N, \quad\left|f(x)-f_{n}(x)\right|<\frac{1}{4} \\
\\
\forall x \in[0,1]
\end{array}
$$

$$
\forall n \exists x \in[0,1]
$$

$f_{n} \rightarrow 0$ unifomit?

$$
N_{0},
$$

$$
\begin{aligned}
& {\left[f_{n}(x)=\frac{1}{n} x^{n} \rightarrow 0\right. \text { peintuise }} \\
& \\
& f(x)=0 \\
& f_{n}^{\prime}(x)=e^{n-1}> \\
& f_{n}^{\prime}(x)=0 \\
& f_{n}^{\prime}(1)=1
\end{aligned}
$$

\rightarrow Yes!
is this unifom convegence? $\quad \varepsilon>0$

$N \quad \frac{1}{N}<\varepsilon$

$$
n \geqslant N\left|f_{n}(x)-0\right|<_{?} \varepsilon
$$

$$
\left|f_{n}(x)\right| \leqslant \frac{1}{n}
$$

Uniform ceenveserce plays well with contanity and integration.

Prop: Suppose $\left.f_{n}: x \rightarrow\right\}$ are all continuance at $x_{0} \in X$ and converge uniformly to a limit f. Then f is continuous at x_{0}.

Con: If $\left(f_{n}\right)$ is a sequere of continues functions convequm unifoncy to a limit f, the 1 mit is continuous,
$P f:$ Let $\varepsilon>0$, There exists N so if $n \geq U$, $d_{y}\left(f\left(x_{0}\right), f_{n}\left(x_{0}\right)\right)<\varepsilon$. Since f_{N} is contsiviaus at to there exists $\delta>0$ so if

$$
d_{x}\left(x, x_{0}\right)<\delta \text { then } d\left(f_{N}\left(x_{0}\right), f_{N}(x)\right)<\varepsilon \text {. }
$$

Wut then if $d_{x}\left(x, x_{0}\right)<\delta$,

$$
\begin{aligned}
d_{\varphi}\left(f(x), f\left(x_{0}\right)\right) & \leqslant d_{\varphi}\left(f(x), f_{N}(x)\right)+d_{\mu}\left(f_{\nu}(x), f_{\nu}\left(x_{0}\right)+d_{\nu}\left(f_{\nu}\left(x_{0}\right), f\left(x_{0}\right)\right)\right. \\
& <\underbrace{\varepsilon}_{\text {u.c. }}+\underbrace{\varepsilon_{v}}_{\text {cont. of } f_{N}}+\underbrace{\varepsilon_{0}}_{\text {u.c. }} \\
& =3 \varepsilon_{0}
\end{aligned}
$$

"The unifom inist of contunues fuction is custimaus."

Integration:
Butt verier,
Riemment? Yes!

Prap: Suppose $\left(f_{n}\right)$ is a sequence of cortomus Suctions on $[a, b]$ and $f_{n} \rightarrow f$ uniformly. Then f is Reran integrable and

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}=\int_{a}^{b} f .
$$

Pf: Since $f_{n} \rightarrow f$ uniformly, f is continuous and is have Riemann integrable, Let $\varepsilon>0$ and proc N so if $n \geqslant N,\left|f(x)-f_{m}(x)\right|<\varepsilon$ for all $x \in[a, b]$. Then if $n \geqslant N$,

$$
\begin{aligned}
\left|\int_{a}^{b} f_{1}-\int_{a}^{b} f\right| & =\left|\int_{a}^{b}\left(f_{1}-f\right)\right| \\
& \leqslant \int_{a}^{b}\left|f_{1}-f\right| \\
& \leqslant \int_{a}^{b} \varepsilon \\
& =(b-a) \varepsilon
\end{aligned}
$$

So $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}=\int_{a}^{b} f$.

$$
\lim _{n \rightarrow \infty} z_{n}=z \quad z_{n} \in \mathbb{R} \quad n \geqslant N\left|z-z_{n}\right|<\varepsilon
$$

Regarding diffecentiation untain convesence is sof encents.

$$
\begin{aligned}
& \quad f_{n}(x)=\frac{1}{n} x^{n} \\
& f_{n}(x)=\frac{1}{n} \sin (n x) \text { or }[0, \pi] \\
& \quad f_{n} \rightarrow 0 \text { on } \rightarrow \text { benly } \\
& f_{n}^{\prime}(x)=\cos (n x)
\end{aligned}
$$

