Lest class
$T: X \rightarrow Y$, liveme
T is ots $\Leftrightarrow \exists C$ s.t.

$$
\text { (*) }\left\|T_{x}\right\|_{y} \leqslant C\left\|_{x}\right\|_{x} \quad \forall x \in X
$$

$$
\uparrow
$$

If $\hat{c} \geqslant C$ the it also wortiss in $\hat{\jmath}$
So are is interestel in the lenst C that "wotk"

If $x \neq 0 \quad(x)$ is vewitten

$$
\frac{\left\|\tau_{x}\right\|_{y}}{\|x\|_{x}} \leqslant C
$$

$$
\sup _{x \in x} \frac{\left\|T_{x}\right\|_{y}}{\|x\|_{x}}
$$

finite, is the smallest C that works
$\rightarrow\|T\|$, operator nom of T
$B(X, y)$ is the sot of all continacios (boondel) (hem maps hen X to Y.

Exercise: $B(X, Y)$ is a vector space and the operator nom is a sorn on it.

Back to ear story: when are two nouns equivalent?

$$
\frac{\left(x,\|\cdot\|_{1}\right)}{x_{1}}, \frac{\left(x, \|-\pi_{2}\right)}{x_{2}}
$$

Mons are equivalat if

$$
\begin{aligned}
& \dot{i}: x_{1} \rightarrow x_{2} \\
& \iota^{-1}: x_{2} \rightarrow x_{1}
\end{aligned}
$$

i i: x_{1} to x_{2} is continuous ff there exits C such that $\left\|i_{x}\right\|_{x_{2}} \leq C\|x\|_{x_{1}}$

$$
\begin{aligned}
& \|x\|_{x_{2}} \leqslant C_{1}\|x\|_{x_{1}} \\
& \|x\|_{x_{1}} \leqslant C_{2}\left\|_{x}\right\|_{x_{2}} \rightarrow \frac{\sqrt{\frac{1}{C_{2}}}\|x\|_{x_{1}} \leqslant\|x\|_{x_{2}}}{c\|x\|_{x_{1}} \leqslant\|x\|_{x_{2}} \leqslant C\left\|_{x}\right\|_{x_{1}} \quad \forall x \in X}
\end{aligned}
$$

on \mathbb{R}^{n}

$$
\begin{aligned}
\|x\|_{\infty} \leqslant\|x\|_{1} & \|x\|_{1} \leqslant n \quad\|x\|_{\infty} \\
\|x\|_{\infty} \leqslant\|x\|_{2} & \|x\|_{2} \leqslant \sqrt{n}\|x\|_{\infty 0} \\
\|x\|_{2} \leqslant\|x\|_{1} & \|x\|_{1} \leqslant \sqrt{n}\|x\|_{2} \\
& \xlongequal{ } \text { CS-neq }
\end{aligned}
$$

On \mathbb{R}^{n}, the l_{1}, l_{∞}, l_{2} nom are all equivalent.

Clam: on \mathbb{R}^{n} all noms are equiralect.

$$
\begin{aligned}
& z \\
& T l_{1}, l_{\infty} \\
& (\underbrace{1, \ldots, 1,0 \ldots 0)}_{n} \\
& \|z\|_{1} \leqslant C\|z\|_{\infty}
\end{aligned}
$$

Leman: A subbet of \mathbb{R}^{n} is compuct w.rt. l_{1} noun iff it is cbosed and bouded.

$$
[-\mu, \mu]+\cdots \times[-\mu, \mu] \ll t c h
$$

Clevel sets of cartionass fuctious are
Cor: The set $\left\{x \in \mathbb{R}\left\|_{\|}\right\|_{1}=1\right\}$ s conpuct cuctured. wat ℓ_{1}.

$$
\begin{array}{r}
x_{1} \rightarrow x \quad \stackrel{?}{\Rightarrow}\| \|_{x} \|_{1}=1 \\
\left\|x_{n}\right\|_{i}=1 \\
x_{n} \rightarrow x \stackrel{\text { d }}{\Rightarrow}\left\|x_{n}\right\|_{\rightarrow} \rightarrow\|x\|
\end{array}
$$

Yeol, by the Δ meq.

$$
\begin{aligned}
& \|x\|=\|x-y+y\| \leq\|x-y\|+\|y\| \\
& \|x\|-\|y\| \leq\|x-y\| \\
& \|y\|-\|x\| \leq\|y-x\|=\|x-y\| \\
& \|x\|-\|y\| \geq-\|x-y\| \\
& -\|x-y\| \leqslant\|x\|-\|y\| \leqslant\|x-y\|
\end{aligned}
$$

nomis is
Lip coutiemes

$$
\text { with Lip cousbot } 1 \text {. }
$$

Prop: Let $\left\|\|\cdot\|\right.$ be a nom on \mathbb{R}^{n}. The $\| 1 .\| \|$ is q equivalat $\sim\|-\|_{1}$. to the

Cor: [Exercise] all nous an \mathbb{R}^{n} are equivalent; shan equiralere of norms is an eqivaluce velation.

Pf: Let $e^{(k)}=(0, \ldots, 1,0 \ldots 0)$

$$
\mathrm{c}_{k^{\text {th }}} \text { slot. }
$$

Let $C=\max _{k}\left(\left\|e^{(k)}\right\| \|\right) \wedge x=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$
Thin $f \quad x \in \mathbb{R}^{n}, x=\sum_{k=1}^{n} c_{k} e^{(k)}$ and

$$
\begin{aligned}
\|x \mid\| & =\left\|\left|\sum_{k=1}^{n} c_{k} e^{(n)} \|\right|\right. \\
& \leqslant \sum_{k=1}^{n}\left\|c_{c} e^{(k)}\right\| \mid \\
& =\sum_{k=1}^{n}\left|c_{k}\right| \cdot\left\|e^{(k)}\right\| \mid \\
& \leqslant \sum_{k=1}^{n} C\left|c_{k}\right| \\
& =C\left\|_{x}\right\|_{1} .
\end{aligned}
$$

Convesely to show the rivese is equalit, cossoder $x, y \in \mathbb{R}^{n}$ Then

$$
\mid\| \| x \|\left(-\left\|\left|y\||\leqslant|\| x-y\| \| \leqslant C\|x-y\|_{1} .\right.\right.\right.
$$

Herce the mup $x \longmapsto x$ is Lip cortanuas fius $\left(\mathbb{R}^{n}, l_{i}\right)$ to $\left(\mathbb{R}^{n},\| \| \cdot \|()\right.$. The set $A=\left\{\times \in \mathbb{R}^{n}:\|\times\|_{1}=1\right\}$

13 couproct with respoct to l and hase $\|\|I\| I$ achieves a minimum c on A. Moreaur $c>0$.

Now consule $x \in \mathbb{R}^{n}, x \neq 0$. Then
 $x /\|x\|_{1} \in A$ arl hace
$\|\|x /\| x\|, \| \geqslant c$ and equivalatly

$$
\|\|x\| \geqslant c\| x \|_{1} .
$$

The sane Mequily is obocius of $x=0$.

Ererise: Any forte dime vector space linus the properly that all nous are equivalent.

Show that if $T: \mathbb{R}^{n} \rightarrow V$ is a liner iso
the $x \longleftrightarrow\left\|T_{x}\right\|_{V}$ is a nom ar \mathbb{R}^{n}

Sequices and series of functions

Wart to solve

$$
\begin{aligned}
& u_{t}=u_{x x} \\
& \left.u\right|_{x=0}=\left.u\right|_{x=\pi}=0
\end{aligned}
$$

