Recall:

$$
\begin{array}{r}
\frac{\left(x, d_{1}\right)}{X_{1}} \frac{\left(x, d_{2}\right)}{x_{2}} \\
x_{1} \xrightarrow{d_{1}} x \Leftrightarrow x_{n} \xrightarrow{d_{2}} x
\end{array}
$$

Metries are equivaleil if they detemine the sume converget sequices.

$$
\begin{aligned}
& X_{1} \xrightarrow{i} \rightarrow X_{2} \\
& i(x) \longrightarrow x \rightarrow \underset{d_{c}}{r} \rightarrow c^{\prime}\left(x_{n}\right) \rightarrow d_{2}(x)
\end{aligned}
$$

\forall sequas with $x_{n} \rightarrow d_{1} x \Rightarrow x_{1} \rightarrow d_{1} x^{d}$ sune as $i: x_{1} \rightarrow x_{2}$ is conturads.

Metrics are equibalent iff

$$
\dot{c}: x_{1} \rightarrow x_{2}
$$

$c^{-i}: x_{2} \rightarrow x_{1}$ are continuas.
[A continmues map with a continuars nuese is triaon
as a homeonorphism]

In the context of romed vector spuces:

$$
\begin{gathered}
x_{1}=\left(x,\|\cdot\|_{1}\right) \quad x_{2}=\left(x,\|,\|_{2}\right) \\
0: x_{1} \rightarrow x_{2}
\end{gathered}
$$

G is a lurew map.

$$
i^{\prime}(x+y)=i(x)+i(y) \quad \forall x+y l \in N \notin d y
$$

The equivalenc of the netrizs associated with the two nomis is deternind ly the continuly of the limew nop ó.

Let's talk aboent cortmudy of linee naps.
Not all liner maps ae contunuas ($\left.\begin{array}{l}1 \\ 1\end{array}\right)$

$$
\begin{gathered}
P[0,1], L_{\infty} \\
\partial: P[0,1] \rightarrow P[0,1]
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d}{d x}(f(x)+q(x))=f^{\prime}(x)+g^{\prime}(x) \\
& f_{1}(x)=\frac{1}{n} x^{n} \quad f_{n} \xrightarrow{L_{\infty}} 0 \quad\left(l_{n}\right. \\
& \left(\partial f_{n}\right)(x)=x^{n-1}
\end{aligned} \quad\left\|\frac{1}{n} x^{n}\right\|_{\infty}=\frac{1}{n} \rightarrow 0
$$

If ∂ were continuaus, $\partial f_{1} \rightarrow 0\left(n L_{\infty}\right)$

$$
\begin{aligned}
& \left.\partial f_{n}\right)(1)=1 \quad \forall n_{1} \\
& \left\|\partial f_{n}-0\right\|_{\infty} \geqslant 1 \\
& \partial f_{n} \rightarrow 0 \geqslant N_{0} \text { veny }
\end{aligned}
$$

$Z=\left\{\right.$ sequies that ead in a tricl of $\left.O^{\prime} S\right\}, l_{\infty}$
$z \stackrel{f}{\longrightarrow} l_{1} \longleftarrow$ not cortomaers.

$$
\begin{aligned}
& z \longmapsto z \\
& z_{n}=\left(\frac{1}{n}, \frac{1}{n}, \cdots, \frac{1}{n}, 0,0, \ldots-3\right. \\
& z_{u} \rightarrow z \\
& \|x\|_{\infty}=\sup _{n}\left|x_{1}\right| \\
& \left\|z_{n}-0\right\|_{\infty}=\frac{1}{n} \longrightarrow 0
\end{aligned}
$$

If f were contamin, $f\left(z_{1}\right) \rightarrow f(0)$ in l_{1}

$$
z_{n} \rightarrow 0 \text { м } l_{i}
$$

$$
\left\|z_{n}-0\right\|_{1}=\left\|z_{n}\right\|_{1}=1
$$

Contimis) of Linear Maps.

Lermini Surpose $T: x \rightarrow \zeta$ is linear T Ten T is continuas if and orly if it is contancacy at 0 .

Pf: Evidently if T is contimans, it is contimeus of O. Suppose T is continuars at O, Suppose $\left(x_{n}\right)$ is a sequire in x carvesis to sane $x\left[J_{0}\left(T_{n}\right) \rightarrow T\left(x_{x}\right]\right.$ Since traslation is cortinicus, $x_{1}-x \rightarrow 0$.

Since T is contanices at $0, T\left(x_{1}-x\right) \rightarrow T(0)=0$
But by lineuinty, $T\left(x_{1}-x\right)=T\left(x_{1}\right)-T(x)$.
Agally ly cortimats of traslution, $T\left(x_{1}\right) \rightarrow T(x)$.

Contuanty at 0 for livew maps;
Def: $T_{i} x \rightarrow Y_{i}$ is boundal if Nere exists $C>0$ sech that
$\|T(x)\|_{y} \leqslant C\|x\|_{x} \quad$ for all $x \in X_{0}$

$$
C=45 \quad x \in B_{1}^{x}(0) \quad\|T(x)\|_{y} \leqslant 45
$$

$$
x \in B_{2}^{x}(0) \quad\|T(x)\| y \leq 90
$$

Prop: Suppese $T: X \rightarrow Y$ is linew Then TFAE

1) T is bourdal
2) $T\left(B_{1}^{X}(0)\right)$ is a bonded subset of Y
3) T is continnus it 0 .

Pf: 1$) \Rightarrow 21$
Suppose T is banded with associated constant C.
Let $x \in B_{1}^{x}(0) \quad \pi_{\text {en }}\|T(x)\|_{y} \leqslant C\|x\|_{x}<C$.
Here $T\left(B_{1}^{X}(0)\right) \subseteq B_{C}^{Y}(0)$ and is therefore bounded.
2) $\Rightarrow 1)$ Suppre $T\left(B_{1}^{x}(0)\right) \subset B_{c}^{\psi}(0)$. Obsere that fer any $n>0 T\left(B_{r}^{x}(0)\right)=r T\left(B_{1}^{x}(0)\right)$

Cornice some $x \neq 0$. Then $\frac{x}{2\left\|\left\|\|_{1}\right.\right.} \in B_{1}^{x}(0)$ and

$$
\left\|T\left(\frac{x}{2\|k\|_{x}}\right)\right\|_{Y} \leqslant C \text { and }\|T(x)\|_{Y} \leqslant 2 C\|x\|_{X} \text {. }
$$

This also holds for $x=0$, trivially So T is banded.
2) $\Rightarrow 3)$ Seppose $T\left(B_{1}^{x}(0)\right)$ is boundal and hice contund in sone $B_{C}^{\varphi}(\partial)$.

Let $\varepsilon>0$. Pick $\delta=\varepsilon / c$.
If $\|x-0\|_{x}<\delta$ then $x \in B_{\delta}^{x}(0)$ and

$$
T(x) \in B_{\delta C}^{Y}(0)=B_{\varepsilon}^{Y}(0)
$$

So $\|T(x)-T(O)\|_{y}<\varepsilon$ and T is carticumes at O.
$3)=72$ Suppese T is continuas at 0 .
Then thac exists $\delta>0$ so if $\|x-0\|_{x}<\delta$,

$$
\begin{aligned}
& \|T(x)-T(0)\|_{Y}<1 . \\
& S_{0} T\left(B_{\delta}^{Y}(0)\right) \subseteq B_{1}^{Y}(0) \mathrm{ad}
\end{aligned}
$$

$$
T\left(B_{1}^{X}(0)\right) \subseteq B_{1 / \delta}^{Y}(0) .
$$

This $T\left(B_{1}^{X}\right)$ is bondid in Y,

$$
\begin{aligned}
& z_{n}=\left(\frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}, 0, \cdots 0\right. \\
& \hat{z}_{n}=\frac{\left(1,1,1, \ldots, 1,1,0, l_{\infty}\right.}{n} \\
& \hat{z}_{n} \in \underbrace{B_{2}^{z}(0)}_{2}{ }^{n}) \\
& f\left(\hat{z}_{n}\right)=(1,1,1, \cdots, 1,0-\cdots) \\
& \left\|f\left(\hat{z}_{1}\right)\right\|_{1}=n^{n}
\end{aligned}
$$

Cor: Nomen spues X_{1} and X_{2} hive equiniat metrics it and only f there exist carstats $c_{i} c_{2}$ with

$$
c_{1}\|x\|_{2} \leq \underbrace{\|x\|_{1} \leqslant x \|_{2}}_{i^{i-1} x_{2} \rightarrow x_{1} \text { is cts }} \forall
$$

$$
i: x_{1} \rightarrow x_{2} \text { is cts }
$$

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \\
& \|x\|_{\infty} \leq\|x\|_{1} \leq n\|x\|_{\infty}
\end{aligned}
$$

