(X, d) (X, d_2) Recall: Ln -> X Xy a man X a a C-7 Metrics are equivalent. I they destaume the sure converger 5 equices. X $\delta(x_n) \rightarrow \delta(x)$ $\mathcal{C}(\psi) \longrightarrow \mathcal{X}$ I sequences with xn = xn = xn = xn = xn = xn = Ui X, -> X2 is contruets.

Metrics are equivalent ,ff ú: X, -> Yz 5-1: X -> X, are continuous. A continuers map with a continuers inverse is known as a homeonorphism In the context of normed vector spaces. $X_{l} = (X, \| \cdot \|_{l}) \qquad X_{z} = (X, \| \cdot \|_{z})$ $\dot{o}: X_{i} \rightarrow X_{z}$ (7 13 a luren map

At yet the tog $\dot{c}(x+y) = \bar{c}(x) + \bar{c}(y)$ $\int c \left(c \times \right) = c \overline{c} \left(x \right)$ $\chi + \gamma = \chi + \gamma$ The equivalence of the metrics associated with the two vomes is determined by the continuity of the linear mop c. Let's talk about containly of line neps. Not all linear maps are continuers. (!) $P[o, \Box], Loo$ [].0] 9 ~ [].0] 9:6

 $\frac{d}{dx}\left(f(x)+q(x)\right) = f'(x) + q'(x)$ Loo $f_n \xrightarrow{\sim} 0$ $f_n(x) = -\frac{1}{n} x^n$ $(\mathcal{I})^{(n)}(x) = \chi_{n}$ $\| \int_{\Omega} x^{n} \|_{\infty} = \int_{\Omega} -z O$ If I were continuous, df, -> O (u Loo) $(\partial_{n}f_{n})(n) = (\partial_{n}f_{n}) + (\partial_{n}f_{n})$ $\|\partial f_n - O\| \geq \|$ 25, -> 0? No very

Z = 3 segures that end in a truit of 0's 3, los ZCF>l, l' not continuaes. $Z_{n} = (\frac{1}{n}, \frac{1}{n}, -\frac{1}{n}, \frac{1}{n}, 0, 0, --\frac{3}{3})$ n tunes $\| \times \|_{\infty} = 5 \mu P \left[\times_{\Lambda} \right]$ Zu 11 Z1-01 00= 1 -20 If f were continues, f(z1) > f(o) in l, $Z_{\rm M} > O$ in $l_{\rm C}$

 $|| z_n - O ||_1 = || z_n ||_1 = 1$ Containing of Linear Maps. Lemmi Suppose T: X-7 4 13 lineur, Then T is continuous, I and only, I it is containing at Ora Pf: Evidently if T is continuous, it is continues at O Suppose T is continuous at O, Suppose (m) is a sequere in X carvesis to some x. [Job: TGn) - T(x] Since traislation is continuous, 41-X-20.

Since T is contained at O, $T(x_n-x) = T(o) = O$ But by linewity, $T(x_n - x) = T(x_n) - T(x)$. Again, by continuity of translation, T(xn) > T(x). Contracty at O for linear maps; 1 min Def: T: X =7 (13 boundard if there exists C>0 such that $\|T(x)\|_{Y} \leq C \|x\|_{X}$ for all $x \in X$. $x \in B_{\ell}^{X}(o)$ $||T(x)||_{y} \leq 45$ C = 45

 $x \in B_2^{\times}(0)$ $||T(x)||_{\mathcal{Y}} \leq 90$ (1)Prop: Suppose T: X->Y is linew. Then TFAE 1) T 13 bouded 2) T(BX(0)) 13 a bonded subset of Y 3) (is continued at

 $Pf(1) \Rightarrow 2$ Suppose T is build with associated carestant C. Let $x \in B_{1}^{\times}(0)$. Then $\|T(x)\|_{Y} \leq C \|x\|_{X} \leq C$. Here T(BX(0)) S B2(0) and is therefore bounded. $\sum_{z} = 21 \quad \text{Suppose } T(B_{z}^{x}(0)) \in B_{c}^{y}(0).$ $2) = 21 \quad \text{Observe Hat for any } 170 \quad T(B_{r}^{x}(0)) = r T(B_{r}^{x}(0)).$ Consider some $x \neq 0$. Then $\frac{x}{2,\|u\|_{1}} \in B_{1}^{\times}(0)$ and $\|T(\mathbf{x})\|_{Y} \leq C$ and $\|T(\mathbf{x})\|_{Y} \leq 2C\|\mathbf{x}\|_{X}$. This also holds for t= 0, trivially. So T is bounded,

2)=>3) Suppose T(B,O), 5 bounded and have
contumed in some $B_{c}^{\gamma}(\delta)$.
Let $\varepsilon > 0$. Pick $S = \varepsilon/c$.
If $\ x-0\ _{\mathcal{X}} < \delta$ then $x \in B_{\delta}^{\times}(\delta)$ and
$T(x) \in B_{sc}^{\gamma}(o) = B_{\varepsilon}^{\gamma}(o),$
So II TQ - TOMY LE and T is continues at O.
3)=72, Suppose T is continues at 0.
Then there exists 570 20 if 11x-01/<5,
$\ \tau_{0} - \tau_{0} \ _{y} < 1$.
$S_{o}T(B_{s}^{\prime}(o)) \subseteq B_{1}^{\prime}(o)$ and

 $T(B_{i}^{\times}(o)) \subseteq B_{V_{\delta}}^{\vee}(o)$. This T(B, (D)) is bound in Y, $= (\overline{a}, \overline{a}, \overline{a}, \overline{a}, -, \overline{a}, 0) - O \in \mathbb{Z}, \mathcal{L}_{0}$ $\lambda_{2n} = (1, 1, 1, --, 1, 0, --)$ $\hat{z}_n \in B_2^2(\delta)$ $f(\hat{z}_{n}) = C(1, 1, 1, ..., 1, 0)$ $\|f(\hat{z}_{1})\| = 0$

Cor: Normed spaces X, and Xz have equivalent
netrics it and only of thee exist constitutes and
with
$q \ x\ _2 \leq \ x\ _1 \leq c_2 \ x\ _2$, $\forall x \in X_1 = X_2$.
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
$\ \chi \ _{\mathcal{L}} \leq \frac{1}{C_1} \ \chi \ _{\mathcal{L}}$
(i X, -> Xz 13 05
· · · · · · · · · · · · · · · · · · ·

XERY $\| x \|_{00} \leq \| x \|_{1} \leq \| x \|_{00}$