Uniform Cortanity
Def: A function $f: x \rightarrow Y$ is uniforms continucies of for every $\varepsilon>0$ there exists $\delta>0$ so that if $x_{1}, x_{2} \in X$ and $d\left(x_{1}, x_{2}\right)<\delta$ then $d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)<\varepsilon$.
[One δ works in all places allot once].
[.s. $\sin (x)$

$$
\angle \varepsilon
$$

Lipchitz functions

$$
\begin{aligned}
& k|x-y|<\varepsilon \\
& |x-y|<\varepsilon / k
\end{aligned}
$$

e.g. $f(x)=x^{2}$
G not U.C.
$\exists \varepsilon$ suid that $\forall \delta>0 \quad \exists \quad x_{1}, x_{2}, d\left(x_{1}, x_{2}\right)<\delta$

$$
d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \geqslant \varepsilon
$$

$$
\begin{aligned}
& x_{1}=x>0 \\
& x_{2}=x+h \quad h>0 \\
& f\left(t_{2}\right)-f\left(x_{1}\right)=2 x h+h^{2} \\
&\left|f\left(x_{2}\right)-f\left(x_{h}\right)\right|=2 \times h+h^{2} \quad \varepsilon=1 \\
& \geqslant 2 \times h \quad h<\delta \\
&>1
\end{aligned}
$$

$$
\begin{aligned}
& \sin (1 / x) \text { on }(0,1] \\
& \varepsilon=1 \\
& \delta
\end{aligned}\left|d / d /\left.\right|^{\prime}\right|
$$

Equameat Somulution of U.C.

$$
\left.\begin{array}{rl}
\forall \varepsilon>0, \exists \delta>0 & \text { so } \\
\forall x \in x \\
f\left(B_{\delta}(x)\right) \subseteq & B_{\varepsilon}(f(x))
\end{array}\right] \text { Erecise }
$$

Prop: Suppose $f: x \rightarrow Y$ B oritonly cortaruces.
If $A \subseteq X$ is totally bounded than so is $f(A)$.
Pf: Let $A \subseteq x$ be totally beamed, Let $\varepsilon>0$ ard fud $\delta>0$ so tut for all $x \in X, \quad f\left(B_{s}^{X}(x)\right) \subseteq B_{\varepsilon}^{Y}(f(x))$.
Let $x_{1}, x_{2}, \ldots, x_{1}$ be a δ - net for A.
So $A \subseteq \bigcup_{k=1}^{n} B_{\delta}^{x}\left(x_{k}\right)$. But then

$$
\begin{aligned}
f(A) & =f\left(\bigcup_{k=1}^{n} B_{\delta}^{x}\left(x_{c}\right)\right) \\
& =\bigcup_{k=1}^{n} f\left(B_{\delta}^{x}\left(x_{k}\right)\right) \\
& \subseteq \bigcup_{k=1}^{n} B_{\varepsilon}^{u}\left(f\left(x_{c}\right)\right)
\end{aligned}
$$

So $f\left(x_{i}\right), \ldots, f\left(y_{n}\right)$ is an e-net for $f(A)$.

Prop: Suppose X is compact and $f: X \rightarrow U$ is conticuraus
Then f is uniformly continual.
Pf: Suppose to produce a contradiction that f is not unitomly costumers.
Then there exists an $\varepsilon>0$ such that
for all $n \in \mathbb{N}$ the ne exist $a_{1}, b_{n} \in X$ such that $d^{x}\left(a_{n}, b_{n}\right)<\frac{1}{n}$ but $d^{4}\left(f\left(a_{n}\right), f\left(b_{n}\right)\right) \geqslant \varepsilon$.
Since X is compact we con extract a saquice ($a_{\wedge_{k}}$) convegus to some a_{1}
$O \underset{\text { fer each }}{O \operatorname{seve}} \operatorname{la} d\left(a, b_{n_{k}}\right) \leqslant d\left(a, a_{n_{k}}\right)+d\left(a_{k}, b_{n_{k}}\right)$

$$
\leqslant d\left(a, a_{k}\right)+\frac{1}{n_{k}} .
$$

As $k \rightarrow 0, d\left(a, a_{k}\right) \rightarrow 0$ and $\quad 1 / k \rightarrow 0$.
Hence $d\left(a, b_{k}\right) \rightarrow 0$; re $b_{k} \rightarrow a$ as well,
We then hame, by costicunter, $f\left(a_{k}\right) \rightarrow f(a)$ al $f\left(b_{k}\right) \rightarrow f(a)$,
But this is impossible since $d\left(f\left(f_{n_{c}}\right), f\left(b_{i_{k}}\right)\right) \geqslant \varepsilon$ for all k,

I'd like to extad f to all of \bar{A}.

$$
\begin{aligned}
& f:(0,1] \rightarrow \mathbb{R} \\
& f(x)=\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
& f:(0,1] \rightarrow R \\
& f(x)=\sin (1 / x)
\end{aligned}
$$

Than: Suppose $A \subseteq x, f: A \rightarrow Y$ is unifomb cartarucay Y is complete, and $\bar{A}=X . \pi_{m}$ the exists a unique continues function $\bar{f}: x \rightarrow Y$ such that $\left.\bar{f}\right|_{t}=f$. Moreover, \bar{f} is vaifonily continuous.

Pf: Let $x \in X$ and let $\left(a_{n}\right)$ be a sequence in A conversing to x. Since $\left(a_{n}\right)$ is Carly and since f is U.C., $\left(f\left(a_{n}\right)\right)$ is also (arch).

Since Y is complete, $f\left(a_{n}\right) \rightarrow y$ for some $y \in Y$.
We define $\bar{f}(x)=y$.
$[$ Is \bar{f} well defined? $]$

Note that the value $\bar{f}(x)$ is independent of the choice of sequere Indeed, if $z_{n} \rightarrow x$ than $\left(a_{1}, z_{1}, a_{2}, z_{2}, \ldots\right)$ also convenes to x and by the argument above $\left(f\left(a_{1}\right), f\left(z_{1}\right), f\left(a_{2}\right), f\left(z_{2}\right), \ldots\right)$ converges to same limit \hat{y}. But this sequence has a subsaque covering to y and hence $\hat{y}=y$, Rut then $f\left(z_{h}\right) \rightarrow y$ as well.
I clam that \bar{f} defined this way is onifomly cortowais. Indeed let $\varepsilon>0$. Pick δ so if $a, b \in A$ and $d(a, b)<\delta$ thin $d(f(a), f(b))<\varepsilon / z$.

Now suppose $a, b \in X$ and $d(a, b)<\delta / 3$.
Find sequces $\left(a_{n}\right),\left(b_{n}\right)$ in A with $a_{n} \rightarrow a_{j} b_{n} \rightarrow b$.
Pick N so if $n \geqslant N \quad d\left(a_{n}, a\right)<\delta / 3$ ad $d\left(b_{n}, b\right)<s / 3$.
Then of $n \geqslant N$

$$
\begin{aligned}
d\left(a_{1}, b_{n}\right) & \leqslant d\left(a_{n}, a\right)+d(a, b)+d\left(b_{0}, b_{n}\right) \\
& <\frac{\delta}{3}+\frac{\delta}{3}+\frac{\delta}{3}
\end{aligned}
$$

So for $1 \geqslant N, d\left(a_{n}, b_{1}\right)<\delta$ so $d\left(f\left(a_{1}\right), f\left(b_{1}\right)\right)<\frac{\varepsilon}{2}$.
Note: $\quad d(\bar{f}(a), \bar{f}(b))=\lim _{a \rightarrow \infty} d\left(f\left(a_{n}\right), f\left(b_{1}\right)\right)$.
Hence $\quad d(f(a), f(b)) \leq \varepsilon / 2<\varepsilon$.

$$
\left[\begin{array}{rl}
{[\text { Note: }} & \left.\bar{f}\right|_{A}=f \text { unus congtant seq ances }
\end{array}\right] \quad\left[\begin{array}{rr}
a \in A & \left(a_{n}\right) \\
& a_{n}=a \\
f(a)=\lim _{n \rightarrow \infty} f\left(a_{n}\right)=\lim _{n \rightarrow \infty} f(a)=f(a)
\end{array}\right.
$$

