Uniform Containty	· · ·
Def: A function $f: X = Y$ is uniformly continuous if for every ED there exists \$70 so that if $x_1, x_2 \in X$ and $d(x_1, x_2) < \delta$ then $d(f(x_1), f(x_2)) < \varepsilon$.	· · · · · · · · · · · · · · · · · · ·
[One & works in all places all at ance]	· ·
E.S. sale) Lipshitz functions K/X-7/ CE	· · ·
$1 \times 1 \leq $	· · · · · · · · · · · · · · · · · · ·

e.j,	$f(x) = x^2$ (s not U, C,	. .
· · · · · · ·	JE such that US=0	$ (f_{1}) - f_{2}) > \varepsilon$
· · · · · · ·	$X_{i} = X > 0$ $X_{2} = X + h \qquad h > 0$. .
· · · · · ·	$f(z) - f(x) = Z \times h + h^2$	· · · · · · · · · · · · · · · · · · ·
· · · · · ·	$\left f(x)-f(x)\right =2xh+h^{2}$	$\mathcal{E} \stackrel{\sim}{=} ($
· · · · · ·	≥ Z×4	h < 8 x > 1
· · · · · ·		

 $f(x) = x^2$ RAK [0,00) . . . Sim (1/2) 01 $(\circ,]$

Equivilent Somulation of u.c.
$\forall \epsilon = 20, \exists \delta = 20 = 10$ $\forall \epsilon \in X$ $f(B_{\delta}(\lambda)) \subseteq B_{\epsilon}(f(\lambda))$ $E = B_{\epsilon}(f(\lambda))$
Propose f: X-> Y 13 on tomby containers. If $A \equiv X$ is totally bounded then so is FCAS.
Pf: Let $A \subseteq X$ be totally bounded, Let $E \ge 0$ and find $S \ge 0$ so that for all $x \in X$, $f(B_s^X(x)) \subseteq B_z^Y(f(x))$.
Let $x_1, x_2,, x_n$ be a S-net for A . So $A \subseteq \bigcup_{k=1}^{n} B_{S}^{X}(x_k)$. But then k=1

> {f(x): x = 4 3 $(f(A)) \in f(\hat{U}, B_{\delta}^{\times}(x_{\ell}))$ $() f(B_{S}(x_{E}))$ $\hat{U} B_{\varepsilon}^{\gamma}(f(x_{c}))$ So f(x), f(x) is an E-net for f(

Prop: Suppose X is comput and fix-7; is continuous $f(x) = x^2$ Then f is uniformly continuers. on [0,1] Pf: Suppose to produce a contradiction that f 12 U.C. 13 not unitomy continuous. Exocise: verty ducetly Then there exists an EZO such that for all nEN there exist an, by EX such that $d(a_n, b_n) < \frac{1}{4}$ but $d'(f(a_n), f(b_n)) \ge \varepsilon$. Suce X is compact us can extruct a sequice (ank) conveguy to some a, Observe $\bigwedge d(a, b_{n_k}) \leq d(a, a_{n_k}) + d(a_{n_k}, b_{n_k})$ for each k

· ·	$\leq \lambda(\alpha, \alpha_{nk}) + \frac{1}{n_k}$.	
As k > 0,	$d(a,a_{nk}) \rightarrow O$ and $l_{a_k} \rightarrow O$.	· · · ·
Herce d'($(a, b_{n_k}) \rightarrow O_j$ i.e. $b_{n_k} \rightarrow a$ as well,	· · · ·
We then hune,	e, by conformity, f(ank) > f(a) and f(bnk) > f(a),	· · ·
But this is	impossible since $d(f(onk), f(bnk)) \ge E$ for all k	· · · ·
Buit His is	unpossible since $J(f(o_{n_k}), f(b_{n_k})) \ge E$ for all k	• • •
But His is		• • •
. .		1
. .		
. .		1
. .		
		1

.**X** . . I'd like to extend al $\overline{f}:\overline{A} \rightarrow \overline{i}$ We call sieds an F \overline{f} = fconfurnies extension, Cartinuaes. :____: ____: and the second second

 $f:(0,1] \rightarrow \mathbb{R}$ $f:(o, 1] \rightarrow R$ f(x)= sin (1/x)

This Suppose ACX, F: A>i is oriformly continues, Y13 complete, and $\overline{A} = X$. Then thee exists a villique continues function J: X > ? such that $\overline{f}|_{t} = f$. Moreover, \overline{f} is uniformly continuous. Pf: Let KE X and let (on) be a sequence in A conveging to x. Since (an) is (and und since) fis u.c., (f(an)) is also Cauchy. Since Y is complete, f(an) -> y for some y E Y. We define $\overline{f}(x) = \gamma$. [Is I well defined?]

Note that the value $\overline{F}(x)$ is independent of the choice of
sequere. Indeed, if Zn -> x then
(o, z, az, zz,) also converses to x and
by the answert above $(f(a_i), f(z_i), f(z_2), \dots)$
conveyes to sine limit i. But this sequence has
a subsequere conversing to y and hence y = y,
But then $f(z_h) \rightarrow \gamma$ as well.
I claim that I defined this way is uniformly cartomas.
Indeed let E70. Pick S so if a, bEA and d(a,b) <s< td=""></s<>
$\operatorname{Hm} d(Fa), f(b)) < \varepsilon/z.$

Now suppose $a, b \in X$ and $d(a, b) < \frac{5}{3}$.
Find sequences $(a_n), (b_n)$ in A with $a_n > a_n$, $b_p > b_n$
Pick V so if $n \ge N$ $d(a_{n,\alpha}) < \frac{5}{2}$ and $d(b_{n,5}) < \frac{5}{3}$.
Then if nz N
$d(a_1,b_2) \leq d(a_2,a) + d(a_2,b) + d(b_2,b_2)$
$\langle \frac{s}{3} + \frac{s}{3} + \frac{s}{3} \cdot$
So for 17, N, $\lambda(a_n, b_n) < S$ so $d(f(a_n), f(b_n)) < \frac{\varepsilon}{2}$.
Note: $d(\overline{f}(a), \overline{f}(b)) = \lim_{n \to \infty} d(f(a_n), f(b_n)).$
Hence $J(f(a), f(b)) \leq \epsilon_{1/2} \leq \epsilon_{1/2}$

Note: $\overline{f}_A = f$ using constant sequences $a \in A$ (a_1) $a_1 = a$ $\overline{f}(a) = \lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(a) = f(a)$