Given a compact metric space X, what subsets are compart? $A^{*} \subseteq X^{*} = A^{*}$ 2 completer t.b. ET dosed free Propi IF X is compact, A E X is compact iff it is closed.

Warning - continuity preserves neither of completeness	
nor total boundedness	
(see HW)	
But: Me masic combination of both is preserved. <
Continuous suctions map compact sets to conjunct sets.	. .
Prop. If $f: X \rightarrow Y$ is continuous and $K \subseteq K$ is corport that $f(K) \in \mathbb{R}$ well,	
	· · · · · · · ·

Pf' Let (yn) be a sequice in f(K) We can find a sequence in K such that $y_n = f(x_n)$ $(\mathcal{L}_{n}) = (\mathcal{L}_{n})$ Since K is compact up can extract a convergent subsequence (xnk), converging to a limit XCK. By continuity Ynk = f(xnk) > f(x) E f(K).

Cor: If X is compact and f: X -> IR 13 continues then I adress a minimum and a maxium. That is, there exist Xm, XM & K such that f(xm) & f(x) & f(xm) for all x EX. Pf: Since X is compact, f(X) ER is compact also and there fore closed and bounded. Let y = sup (f(X)); his exists sille f(X) = \$ and is bounded above, Let (yn) be a sequence in flx) convergos to y.

X: compuct	· · · · · · · · · · · · ·	Contérucos	· · · · · · · · ·	· · · · ·
$C(x) = \xi f$	$\chi \rightarrow R^2 + is$ of		 	· · · · ·
$\ f\ _{\infty} = 5$	up 2 f(x) : × E	× 3 × 3 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	· · · · · · · · ·	· · · · ·
Z mi	ul 2 f(x) : x e	EXZ (ue	(definel	by al

Def: A spece A is topologically comput The it whenever 2 Va Baci is a collection of open Va's are an open cover sets with A C U Un there exist age, Our such this A finite subcorer

not topologically compat: Mere exists on open cover with no funte vert 5 eb cove $X = U U_{x} \iff (p = \Lambda U_{x}^{c})$ 50x 3 $X \neq \bigcup_{k=1}^{n} \bigcup_{k=1}^{n} (\phi \neq \bigcap_{k=1}^{n} \bigcup_{k=1}^{n} (\phi \neq \bigcap_{k=1}^{n} \bigcup_{k=1}^{n} (\phi \neq \bigcap_{k=1}^{n} (\phi$ sælty X is topologically compared if whenever STA 3 is a collection of closed sets such that $\bigwedge_{k=1}^{n} F_{\alpha_k} \neq \emptyset$ for any since subcollection, $\Lambda F_{x} \neq \phi$.