Thun Suppose X is complete, Then $A \subseteq X$ is complete iff A is closed

Pf: Suppose $A \subseteq X$ is complete Suppose $\left(a_{n}\right)$ is
a serverice in A cowesis to limit \& x. Since
(an) is corvesent it is Candy. Since A is complete
(a) converses to a imit $a \in A$. But cowesere in A implies cortuestace in X Since limits are unique $a=x$.

Conversely suppose A is closed. Let (an) be Cauchy in A. Since X is complete ad sure (a) is also Candy in $X, a_{1} \rightarrow X$ for sone $X \in X$,

Suce A is closal $x \in A$. So $\left(\theta_{1}\right)$ carveses in A to as elenant of At.

Def': A Bancich space is a complete norneal vector spare.

$$
\left(C[0,1], L_{2}\right) \rightarrow \text { ast }
$$

E.g, $\mathbb{R},\left(\mathbb{R}^{n}, l_{2}\right), l_{2}$

$$
\left[\text { an } H W: l_{1}, l_{\infty},<0\right]
$$

For nomel vector spaces there is an oulternative tool for demorstriting completeress.
$X \rightarrow$ nomed vecter space

$$
\begin{array}{r}
\sum_{k=1}^{\infty} x_{k} x_{k} \quad x_{k} \in X \\
S_{n}=\sum_{k=1}^{n} x_{k} \quad \sum_{k} \\
\sum_{k=1}^{\infty} x_{k}=x
\end{array}
$$

A series in X is absolutely summable if $\sum_{k=1}^{\infty}\left\|x_{k}\right\|$ converges.

$$
\sum_{k=1}^{\infty} x_{k}
$$

X
Coweseit series need not be absolutely summable,

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} \sum_{k=1}^{\infty} \frac{1}{k}
$$

Recall: An absolutely wivegent series \not converges, of neal numbers

Than: A normed vector space $X_{\text {is }}$ complete if every absolutely summable series in X converses.

Pf: Suppose X is complete Let $\sum_{k=1}^{\infty} a_{k}$ be absolutely summable. Let $S_{N}=\sum_{k=1}^{N} a_{k}$.

Then if $N<M$

$$
\begin{array}{r}
\text { if } N<M \\
\left\|s_{N}-s_{M}\right\|=\left\|\sum_{k=N+1}^{M} a_{k}\right\| \leqslant\left(\sum_{k=N+1}^{M}\left\|a_{k}\right\|=f_{M}-t_{N}\right. \\
=\left|t_{M}-t_{N}\right|
\end{array}
$$

Let $t_{N}=\sum_{k=1}^{N}\left\|a_{k}\right\|$. Obsove that
$t_{M}-t_{N}=\sum_{k=N+1}^{M}\left\|a_{k}\right\|$. Since the
series is absolutely summable the sequace $\left(t_{N}\right)$ is Cauchy as is The sequice $\left(S_{N}\right)$.
since X is complete, (S_{N}) converses, as does $\sum_{k=1}^{\infty} u_{k}$.

Conversely, suppose absolutely summable series in X converse
Let $\left(x_{n}\right)$ be a Curly sequence.
Find N_{1} so if $n, m \geqslant N_{1},\left\|x_{n}-x_{N}\right\|<\frac{1}{2}$.
Find $N_{2}>N_{1}$ so if $n, m \geqslant N_{2}\left\|x_{1}-x_{n}\right\|\left(\frac{1}{2}\right)^{2}$

Cantive inductively to build a sequice of makeg

$$
N_{1} \subset N_{2}<N_{3} \subset \ldots
$$

such thut if $n, m \geqslant N_{k}\left\|x_{1}-x_{m}\right\|<\left(\frac{1}{2}\right)^{k}$.
Corsiter the subsequase $\left(x_{N_{k}}\right)$.
Observe

$$
x_{N_{k}}=x_{N_{1}}+\left(x_{N_{2}}-x_{N_{1}}\right)+\left(x_{N_{3}}-x_{N_{2}}\right)+\cdots+\left(x_{N_{k}}-x_{N_{k-1}}\right)
$$

Note $\sum_{j=2}^{k}\left\|x_{N_{j}}-x_{N_{j-1}}\right\| \leqslant \sum_{j=2}^{k} \frac{1}{2^{j-1}} \leqslant 1$.

Here $\sum_{j=2}^{k}\left(x_{p_{j}}-x_{p_{j-1}}\right)$ is absolutely summatie and hence sonmable. Thuse $\sum_{k=2}^{\infty}\left(X_{N_{5}}-x_{N_{s-1}}\right)$ conveses as does $\left(x_{N_{k}}\right)$. Thuse $\left(x_{n}\right)$ is a Cuedy sequace with a conversat subsoquace al conveses.

HW: You will we this tast to shew l_{1} is complete.

Def: A set $A \subseteq X$ is compact if evey sequace in A hus a corverset subsequerce. cancusay to a lanit in A.

Lemmu: Suppose $A \subseteq X$ is complete and totally boanded Then A ss compract.

Pf: Let (an) be a sequuce in A.
Since A is totally boundrl we can extrut a Cundy sulosequence $\left(a_{n k}\right)$. Suce A is complete,
(amp converses to a limit in A.

Lemma: Suppose $A \subseteq X$ is compact $\pi_{\text {en }}$ it is totally mendel.

Pf: Let $\left(a_{n}\right)$ be a squmee in A
Since A is compact there exists a convergent and hence Curdy subsequice.

Lemma: Suppose $A \subseteq X$ is compuct. Then A 13 complete.

Pf: Let (an) le Caudy in A. Since A is compuct we cu extract a canverset subsequace $\left(a_{n_{k}}\right)$ canvesus to a linit in A. Since the original sequace is Caidy, it also conveses to the sune limit in A.

Thm: A set $A \subseteq X$ is compuct iff it is complete and totally bounded.
surses of \mathbb{R} closed und bounded ore canpoof

