So $d(x_{n_k}, y_{n_s}) \leq dim(A_k) \leq \frac{1}{K} \leq \varepsilon$. Thm: A set A = X is totally laander iff every Sequence in A hus a Coady subsequence. Suppose A is totally bounded Consule Pf a sequence (x) in A. Since ExpineNBEA, it is totally bounded and the previous lenna shows it advits a Calledy subsequence. Conversely suppose A is not totally boarded. [Job: show there exists a sequence with no Coustry subseq.] Then there exist E70 such there does not exist

 $B_{e}(x_{i})$ an Es-net. Prok XIEA. Since Exi3 is not an E-net Exix23 ve in find +2 EA, XZ & BE(4). Since 2×1,×23 15 nut an z-net we can find ezet se (TB_(xi). Containing Inductively we can construct $\left[\begin{array}{ccc} & & & \\ & & & \\ & & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ \end{array}\right] \left[\begin{array}{ccc} & & & \\ \end{array}\right] \left[\begin{array}{ccc} & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & \\ & & \\ \end{array}\right] \left[\begin{array}{ccc} & & \\ \end{array}\right] \left[\begin{array}{cccc} & & \\ \end{array}\right] \left[\begin{array}{ccccc} & \\ \end{array}\right] \left[\begin{array}{ccc} & & \\ \end{array}\right] \left[\begin{array}{cccc} \\$ a sequere (1) sud thit is noting $d(x_n, x_n) \geq \varepsilon_o$ This sequence has no Currely subsequence.

Cor: Bolzuo - Weirestrass Every bounded sequere of vert numbers has a convergent Subsequence. Pf: Suppose (4n) = [-R, R] for some RZO Then A = Z Xn: 1 = IN3 is totally bounded 05 [-R, R] 15 and trence it admits a Cavity subsequence. Caudy sequence of real numbers Corveze 1) use total boundedness to extract a caudy subservere 1-2 purch

· · · · · · · · ·	2) Use completeness to verily
	Corlylice,
Defi	A space X 13 complete & every Cauchy
· · · · · · · ·	Sequence 14 × conveges.
· · · · · · · ·	
	DR $d((a,b),(c,d)) = a-c + b-d $
· · · · · · · · ·	E R ² with l, norm,
	Pf_{\cdot} Suppose $(Z_{\lambda} = ((Y_{\lambda}, Y_{\lambda})))$ is Caudy.
	Observe $ X_n - X_m \leq Z_n - Z_m _i^n$
· · · · · · · · ·	Mue (1) 13 Cauchy and converses to
· · · · · · ·	Some (Mit X.

Smiluly (4n) converses to a limit yo We durn Zn > (x,y). Indeed $\|Z_{n} - (x,y)\|_{1} = |x_{n} - x| + |y_{n} - y| \rightarrow 0$ Nofice: again two steps a) Exhibit a condidate (xy). 6) $Z_n \rightarrow (x, y)$

Let's show lz is complete. Suppose (xn) 15 a Sequerce in lz. $x_{n} \in l_{2}$ $x_{n}(k) \in \mathbb{R}$ $x_{n} = (x_{n}(1), x_{n}(2), x_{n}(3), \cdots)$ We need a condidate. $|x_n(l) - x_m(l)|^2 \le \frac{1}{2} |x_n(k) - x_m(k)|^2 = ||x_n - x_m||_2^2$ Huce (4, (M) is Cauly in M and conveges to some land y(1). Proceeding similarly, each (x, (k)) conceses to

a limit y (K). Let y = (Y(1), Y(2), Y(3), ...). a) Is y elz? 6) Does X1 -> 4 in l, $X_{q}(k) \rightarrow \gamma(k)$ 4) Observe for each K [X1(K)] > 1/(K)(~ $\tilde{\Sigma} \left| \gamma(k) \right|^2 = \lim \tilde{\Sigma} \left| \chi_{\Lambda}(k) \right|^2$ $\begin{array}{ccc} |unsup & \mathcal{K} \\ 1 & \mathcal{S} & \mathcal{S} \\ 1 & \mathcal{S} & \mathcal{S} \\ \end{array} \\ \begin{array}{c} |\mathcal{K} \\ \mathcal{K} \\ \mathcal$ m sup [] +] Since (xn) is (any, it is bounded and the

exists M sude that Il ×1 1/2 5 M Ha. So for each K $\Sigma |\gamma(k)|^2 \leq M^2$. Thus $\|Y\|_2 \leq M$. So $\gamma \in l_2$. Sm 5 M 0, 7, 0 > ay Žan EM. . a_n. . . . (Sm b, SM by incruising by y >

Does $x_n \rightarrow \gamma^7$
Let 270. Since (m) is Cauly we can find
N 50 if $n, m \ge N$ $\ x_1 - x_m\ _Z < \varepsilon$.
Observe for each K, & nZN
$\sum_{k=1}^{K} y(k) - x_n(k) ^2 = \lim_{m \to \infty} \sum_{k=1}^{K} x_m(k) - x_n(k) ^2$
$\leq \lim \sup (x_m - x_1 _2^2)$ $m > \infty$
$\leq \varepsilon^{z}$

But then if $n \neq N$, $\ \gamma - \chi_1\ _Z \leq \varepsilon$.	•
$\mathcal{T}_{us} \mathcal{I}_{n} \gg \mathcal{I}_{\sigma}$	•
HW: l, los, co are all complete,	•
$(C[0,1],L_{oc})$: also complete (IOV)	•
$(CEO, 1Z, L_i)$: not complete	•
	•