So $d\left(x_{n_{k}}, x_{n_{j}}\right) \leqslant \operatorname{dimm}\left(A_{k}\right) \leqslant \frac{1}{k}<\varepsilon$.

Thu: $A$ set $A \subseteq X$ is totally banded of every Sequacice in $A$ lis a Curdy subsequace.

Pf: Suppose $A$ is totally bounded Consider a sequace $\left(x_{1}\right)$ in $A$. Since $\left\{x_{1}: n \in \mathbb{M} \leq A\right.$, it is totally bounded and the previous lemma shes it alrits a Cabal subsequacc.
Conversely suppose $A$ is rot totally boondal
[Job: shaw there exists a sequace with no Cushy suboseq]
Then there exist $\varepsilon_{0}>0$ such there does not exist
an $\varepsilon_{0}$-ret
Pick $x_{1} \in A$. Since $\left\{x_{1}\right\}$ is not an $\varepsilon$-ret $\left\{x_{1}, x_{2}\right\}$ we in find $x_{2} \in A, x_{2} \& B_{\varepsilon}\left(x_{1}\right)$. Since $\left\{x_{1}, x_{2}\right\}$ is nut an $\sum_{0}$ net we can find $x_{3} \in A$ s $\notin \bigcup_{i=1}^{2} B_{\varepsilon_{0}}\left(x_{i}\right)$.
Continuing inductively we car construct a sequice $\left(x_{1}\right)$ sud that if $1 \neq m$

$$
d\left(x_{1}, x_{m}\right) \geqslant \varepsilon_{0}
$$



This sequence has no Candy subsequence.
$\square$

Cor; Bolzmo-Weirestrass
Evey boundal sequice of real numbes has a conousat subosequace.

Pf: Supprose $\left(x_{n}\right) \leqslant[-R, R]$ for same $R>0$.
$\pi_{m} A=\left\{x_{n}: n \in \mathbb{N}\right\}$ is totally bouded as $[-R, R]$ is ark lience if adnits a Cauch subsequace. Caudiysequice of real nimbers convere. $\square$
$1-2$ puch: 1) use totil bouidedress to extruct a Caudy sabseloure
2) Use completenoss to verity convegence.

Def: A spuce $X, 3$ complete of every Caucly Sequerce in $X$ coiveges.
e.g. (1) $\mathbb{R}$

$$
d_{1}((a, b),(c, d))=|a-c|+|b-d|
$$

(2) $\mathbb{R}^{2}$ with $l_{1}$ nomm

Pfi Suppose $\left(z_{1}\right)=\left(\left(x_{1}, y_{n}\right)\right)$ is Carcly.
Obserue $\left|x_{1}-x_{m}\right| \leqslant\left\|z_{1}-z_{m}\right\|_{1}$
Here $\left(x_{1}\right)$ is Candy and converes to sonce 1 mit $x$.

Sinivuly $\left(y_{n}\right)$ covers to a limit $y$.
We clank $z_{1} \rightarrow(x, y)$. Indeed

$$
\left\|z_{n}-(x, y)\right\|_{1}=\left|x_{1}-x\right|+\left|y_{1}-y\right| \rightarrow 0 .
$$

Notice: again two steps
a) Exhibit a candidate $(x, y)$
b) $z_{n} \rightarrow(x, y)$

Let's show $l_{2}$ is complete.
Suppere $\left(x_{1}\right)$ is a Canchy sequare is $l_{2}$.

$$
x_{n} \in l_{2} \quad x_{1}(k) \in \mathbb{R} \quad x_{1}=\left(x_{1}(1), x_{1}(2), x_{1}(3), \ldots\right)
$$

We need a cundidate.

$$
\left|x_{n}(1)-x_{m}(1)\right|^{2} \leqslant \sum_{k=1}^{\infty}\left|x_{1}(k)-x_{m}(k)\right|^{2}=\left\|x_{2}-x_{m}\right\|_{2}^{2}
$$

Huce $\left(x_{1}(1)\right)$ is Cauhy in $\mathbb{R}$ and conveses to sane limit y $(1)$.
Preceding similerly, exch $\left(x_{1}(k)\right.$ ) corveses to
a limit $y(k)$ Let $y=(y(1), y(z), y(3), \ldots)$.
a) Is $y \in l_{2}$ ?
b) $D_{\text {oed }} x_{1} \rightarrow y \quad$ i $l_{2}$ ?

$$
\begin{aligned}
& x_{n}(k) \rightarrow y(k) \\
& \left|x_{1}(k)\right|^{2} \rightarrow|y(k)|^{2}
\end{aligned}
$$

4) Observe for each $K$

$$
\begin{aligned}
\sum_{k=1}^{K}|y(k)|^{2} & =\lim _{n \rightarrow \infty} \sum_{k=1}^{k}\left|x_{n}(k)\right|^{2} \\
& =\lim _{n \rightarrow \infty} \sup \sum_{k=1}^{K}\left|x_{n}(k)\right|^{2} \\
& \leq \limsup _{n \rightarrow \infty}\left\|x_{n}\right\|_{2}^{2}
\end{aligned}
$$

Sine $\left(x_{1}\right)$ is Carly, it is bonded and the
enists $M$ sude that $\left\|x_{1}\right\|_{2} \leqslant M \quad \forall a_{\text {. }}$
So for endh $K \quad \sum_{k=1}^{K}|y(k)|^{2} \leq M^{2}$.
Thus $\|y\|_{2} \leq M$. so $y \in l_{2}$.

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n} & a_{n}
\end{aligned} \geqslant 0 \quad S_{m} \leq M .
$$

$b_{n}$, incmuins $b_{1} \leqslant M \quad b_{1} \leqslant b_{1} \leqslant M$

$$
b_{n} \rightarrow b
$$

Does $x_{n} \rightarrow y$ ?
Let $\varepsilon>0$. Since ( $x_{x}$ ) is Candy we can fund $N$ so if $n, m \geqslant N,\left\|x_{1}-x_{m}\right\|_{2}<\varepsilon$.

Observe for exch $K$, if $n \geq N$

$$
\begin{aligned}
\sum_{k=1}^{K}\left|y(k)-x_{n}(k)\right|^{2} & =\lim _{m \rightarrow \infty} \sum_{k=1}^{k}\left|x_{m}(k)-x_{1}(k)\right|^{2} \\
& \leqslant \operatorname{limssp}_{\substack{ \\
\text { sip }}}\left\|x_{m}-x_{1}\right\|_{2}^{2} \\
& \leqslant \varepsilon^{2} .
\end{aligned}
$$

But then if $n \geqslant v, \quad\left\|y-x_{1}\right\|_{2} \leqslant \varepsilon$.

Thus $x_{n} \rightarrow 4$.
Hi: $l_{1}, l_{\infty}$, co ane all complete
$\left(C[0,1], h_{\infty}\right)$ : also complete (IOU)
$\left(C[0,1], L_{1}\right)$ : not complete

