Exercise: Isometries are continuous,

$$
\varepsilon=\delta
$$

Kay Propriety of \mathbb{R} Bounded sequences have corvesert subsequences.
This is false, in geneal, for metre spaces.
Two issues,

$$
\begin{aligned}
& \mathbb{Q}: 3,3,1,3,14,3.141, \ldots \\
& l_{0} \quad e_{n}=(0,0, \ldots, 0,1,0, \ldots)
\end{aligned}
$$

$$
\begin{gathered}
\left(e_{n}\right) \text { is bonded in } l_{B} \quad(0,0,1,0, \ldots, 0,-1,0, \ldots) \\
\left\|e_{n}-e_{m}\right\|_{\infty}=1 \text { if } 1 \neq m
\end{gathered}
$$

So no Carly sulosenuce.

Def: A set $A \subseteq X$ is totally bocended if for all $\varepsilon>0$ There we finitely may points $x_{1}, \ldots, x_{n} \in X$ such that

$$
A \subseteq \bigcup_{i=1}^{n} B_{\varepsilon}\left(x_{i}\right)
$$

Such a collection of points is culled an ε-net for A.

Exeruse: A totolly bauded set is bounded.
$[$ is the coquese tme? No, bot yes for $\mathbb{R}]$

$$
A=\left\{e_{n}\right\} \leq l_{\infty}
$$

Bocaded bat not totally boubal.
There is 20 1/2-net.

$$
\begin{align*}
& z_{1}, \ldots, z_{k} \in l_{00} \\
& A \notin \bigcup_{j=1}^{k} B_{1 / 2}\left(z_{j}\right) \tag{1}
\end{align*}
$$

L_{s} con contan at nostore e_{n}
\longrightarrow contoins at nost k elemente of A

Alternative Characteration
Lena: A set A is totally bounded ff fer all $\varepsilon>0$ there exist $A_{1} j, A_{1} \subseteq A$ such that diam $A_{k}<\varepsilon$ for all k and $A \subseteq \bigcup_{k=1}^{n} A_{k}$.

Pf: Suppose A is totally bocinled Let $\varepsilon>0$ and consider an $\varepsilon \varepsilon_{4}-2 e t$ $\left\{x_{1}, \ldots, x_{1}\right\}$. Let $A_{k}=B_{\varepsilon_{4}}\left(x_{k}\right) \cap A$. Note $\operatorname{dim} A_{k} \leqslant \frac{\varepsilon}{2}<\varepsilon$. Moreover $A \subseteq \bigcup_{k=1}^{n} B_{\varepsilon_{2}}\left(x_{k}\right)$ and hue

$$
A=A \cap A \subseteq \bigcup_{k=1}^{\wedge} A \cap B_{\varepsilon_{/ 2}}\left(k_{k}\right)=\bigcup_{k=1}^{\wedge} A_{k}
$$

Conversely, suppose $A_{i} \ldots A_{1}$ are subsets of

A with dimeter less tum ε for sane $\varepsilon>0$, with WLOG each $A_{k} \neq \phi$ $A \leq \cup A_{k}$.

For each k pick $x_{k} \in A_{k}$. Since $\operatorname{drum}\left(A_{k}\right)<\varepsilon$,

$$
B_{\varepsilon}\left(x_{k}\right) \supseteq A_{k} .
$$

Thin $\bigcup_{k=1}^{n} B_{\varepsilon}\left(x_{k}\right) \geq \bigcup_{k=1} A_{k} \geq A$.
So $\left\{x_{1}, \ldots, x_{n}\right\}$ is an $\varepsilon-1$ ct.

$$
\begin{aligned}
& d(x, y) \leq \operatorname{din}\left(A_{k}\right) \\
& x, y \subset A_{k} \\
& d\left(x_{k}, y\right) \leq \operatorname{din}\left(A_{k}\right) \\
& B_{d_{\text {ing }}\left(A_{k}\right)}\left(C_{k}\right) \geq A_{x}
\end{aligned}
$$

Con: $[0,1]$ is totally bearded $I_{k}=\left[\frac{k-1}{n}, \frac{k}{n}\right] \quad k=1, \ldots, n$.

$$
\left.\operatorname{dom}\left(I_{k}\right)=\frac{1}{n} \bigcup_{k=1}^{1} I_{k}=[0,]\right]
$$

Exercise $[-R, R]$ s tob, $\forall R>0$.
Exercise If A is tob. al $B \in A$ then B in toby
Exercise: Bocidul sabisels of \mathbb{R} are tab.
total boondediess has a lot to do with Curly sequences.

Lemma: Suppose $\left(k_{1}\right)$ is Candy in 4 . Ten $\left\{x_{n}: n \in \mathbb{N}\right\}$ is totally hounded.

Af: Let $\varepsilon>0$, [Job: exhint on ε-net]. Since the sequace is Curdy the exits N so if $1,2 n 3 N$ $d\left(x_{1}, x_{n}\right)<\varepsilon$. We clam $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ ss an e-ret.
$B_{\varepsilon}\left(x_{j}\right) \quad 1 \leqslant j \leqslant N$

$$
\begin{gathered}
x_{k} \\
k \geqslant N \\
d\left(x_{k}, x_{N}\right)<\varepsilon \\
x_{k} \in B_{\varepsilon}\left(x_{N}\right)
\end{gathered}
$$

Indeed if $n \geqslant N, x_{n} \in B_{\varepsilon}\left(\psi_{N}\right)$ and if $n<N, x_{n} \in B_{2}\left(x_{n}\right)$.

Laman: Gwen a sequace $\left(x_{n}\right)$, if $\left\{x_{1}: n \in N\right\}$ is totally baudil) then the sequmee adnits a Cuuly subsequerce.
PF: If $\left\{x_{1}: n \in N\right\}$ is fruite we can extruct a constont Subservene Otharise let $A_{0}=\left\{x_{k}: k \in \mathbb{N}\right\}$.

Since A_{0} is totally bouded there exists a subsot A, with doun $A_{1} \leqslant 1$ sach that A_{1} costains onfintely riny ferns.
Sunce A_{1} is totally houled there exists $A_{2} \subseteq A_{1}$ with diman $A_{2} \leqslant \frac{1}{2}$ al A_{2} carturis infucity many temes of the seyuence.

Catimuis inductively we can find subsets

$$
A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq
$$

where $\operatorname{dim} A_{k} \leq 1 / k$ and ewh A_{k} cortans infiritely uny tems of the seq verce.

We extract a subsequence as follows.
Pick a_{1} such thant $x_{i_{1}} \in A_{1}$.
Pick n_{2} such th it $n_{2}>n_{1}$ and $\alpha_{n_{2}} \in A_{2}$.
This is possible since $x_{1}, x_{2}, \ldots, x_{n_{1}}$ does nat exhaust the infinite set A_{2}.

Contras inductively we constrict a subsoquece $x_{1 k}$ were each $\psi_{k} \in A_{k}$.
To see that the sequice is County, let $\varepsilon>0$.
[Job shaw there $\exists k]$ Pick $k \in \mathbb{N}$ so that $1 / K<\varepsilon$ 。
Suppose $k, j \geqslant k$. Than $x_{1 k} \in A_{k} \subseteq A_{K}$ Similarly, $x_{n_{j}} \in A_{K}$.

$$
\text { So } d\left(x_{n_{k}}, x_{n_{j}}\right) \leqslant \operatorname{dimn}\left(A_{k}\right) \leq \frac{1}{k}<\varepsilon .
$$

Thm: A set $A \subseteq X$ is totilly haondeal iff every Sequance in A his a Curdy subsequace.

