Erease: A finte intersection of open sets 4 open A fainter union of closed sets is closed.

Def: Given a set $A \subseteq X$, \bar{A} (the closure of A) is the intersection of all closed sets contering A.

Note: X is a closed set containers A
\bar{A} is closed and is the smallest closed set container A.

Prop: Let $A \subseteq X$ and let $x \in X$. TFAE

1) $x \in \bar{A}$
2) $\forall \varepsilon>0 \quad B_{\varepsilon}(x) \cap A \neq \phi \quad(\exists y \in \mathcal{A}, d(x, y)<\varepsilon)$
3) \exists a sequence in A converses to x.

Pf: 1$\rangle \Rightarrow 2$) via $(2) \Rightarrow!1$)

Suppose for same $\varepsilon>0$

$$
B_{\varepsilon}(x) \cap A=\phi .
$$

Then $\left[B_{\varepsilon}(x)\right]^{c}$ is a closed set

that contains A and hance also contour $\bar{A}_{\text {. }}$
Sane $x \in B_{\varepsilon}(x), x \notin \bar{A}$.
2) $\Rightarrow 3$)
(We lid a proof jest like this
last class; use $\varepsilon=\frac{1}{n}$)
3) \Rightarrow 1)

Suppose $\left(x_{1}\right)$ in a sequence in A carvers to x.
Then $\left(x_{1}\right)$ is also a sequace in the closed set A. By the sequertal characterization of closed sets, $x \in \bar{A}$.

$$
\begin{aligned}
& \overline{\mathbb{Q}}=\mathbb{R} \\
& x \in \mathbb{R} \quad q_{n} \rightarrow x \quad q_{n} \in \mathbb{Q}
\end{aligned}
$$

[use decimal exparsibors]
\bar{A} is the set of points in X that car be appoximated as well as you cunt by points in A.

Def: We say a set A is dense in X if $\bar{A}=X$. A space X is sepomble if it admits a countable dense set.

Courtable is manaseable. Seporible is almost as moruseable.

$$
\begin{gathered}
P[0,1] \subseteq C[0,1] \\
\downarrow \\
\text { poly's vestruted to }[0,1]
\end{gathered}
$$

Is $P[0,1]$ open? clused? dense?

$$
\overline{P[0,1]}=C[0,1]
$$

we'll prove this!

Inderd polyzunisls with rational coeffecients ane derse and hince $C[0,1]$ is seporable.

Metrizs on neluted spoues
If $A \leq X$ and X is a metuc space, so is A in its own right.

$$
d_{A}(x, y)=d_{x}(x, y)
$$

Exeruse: $U \subseteq A$ is open $\Leftrightarrow \exists V$, operin $X, V \cap A=U$

$$
W \subseteq A \text { is closed } \Leftrightarrow \exists Z \subseteq x \text {, closedin } x, Z \cap A=W
$$

Pradut spaces: X, Y netric apaces

$$
X \times Y=\{(x, y): x \in X, y \in Y\}
$$

$d_{x_{y}, y} \quad$ want $\quad\left(x_{1}, y_{11}\right) \rightarrow(x, y) \quad$ inf
$y_{1} \rightarrow x$ and $y_{1} \rightarrow y$

$$
d_{x \times y}\left(\left(x_{0}, y_{0}\right),\left(x_{c}, y_{c}\right)\right)=\left\{\begin{array}{c}
d_{x}\left(x_{0}, x_{1}\right)+d_{y}\left(y_{0}, y_{1}\right) \\
\left.\left(d_{x}\left(x_{0}, x_{1}\right)\right)^{2}+d_{y}\left(y_{0}, y_{1}\right)^{2}\right)^{k_{2}} \\
\max \left(d_{x}\left(x_{0}, y_{1}\right), d_{y}\left(y_{0}, y_{1}\right)\right.
\end{array}\right.
$$

You'll see this an HW.

Those metrics all determine the sure cowersit sequent and have the sure closed sets ant have the sue open sets.

Continuity:
Def: We say $f: X \rightarrow Y$ is contivenems at $x \in X$ if for all $\varepsilon>0$ there exits $\delta>0$ so that

$$
\begin{aligned}
& \text { if } z \in B_{\delta}(x) \quad f(z) \in B_{\varepsilon}(f(x)) . \\
& {\left[\begin{array}{l}
f\left(B_{\delta}(x)\right) \subseteq B_{\varepsilon}(f(x)) \\
\\
\quad f(A)=\{f(a)=a \in A\}
\end{array}\right.}
\end{aligned}
$$

Def: A forctar $f=x \rightarrow y$ is sequentially contanucus at $x \in X$ if wherever $x_{2} \rightarrow x$ in $X, f\left(x_{1}\right) \rightarrow f(x)$ in Y.

$$
\exists \quad x_{n} \rightarrow x \text { in } x \text { such tut } f\left(x_{n}\right) \mapsto f(x)
$$

Prop: A function is continues at x if and only if it is sequentially continues at 4 .

Pf: Suppose f is continues at x and $x_{1} \rightarrow x$.
[Jolo: $\left.f\left(x_{1}\right) \rightarrow f(x)\right]$
Let $\varepsilon>0$. Then there exists $\delta>0$ such that

$$
f\left(B_{\varepsilon}(x)\right) \subseteq B_{\varepsilon}(f(x)) \text {. Sane } x_{n} \rightarrow x
$$

there exists N so if $n \geqslant N$ than $x_{n} \in B_{\delta}(x)$.
Hence of $u \geqslant N \quad f\left(x_{1}\right) \in B_{\varepsilon}(f(x))$ and hence $f\left(x_{1}\right) \rightarrow f(x)$.

Conversely suppose f is not continues at x.
Sine f is not continues, the exists $\varepsilon>0$ sech that for all $s>0 \quad f\left(B_{\delta}(x)\right) \notin B_{\varepsilon}(f(x))$. So for each $n \in \mathbb{N}$ we can pret $x_{n} \in B_{1 / n}(x)$ with $d\left(f\left(x_{1}\right), f(x)\right) \geqslant \varepsilon$. Bat then $x_{n} \rightarrow x$ and $f\left(x_{1}\right) \nRightarrow f(x)$.

