How is R different fram Q? / What is on upper bound for \$?

Axion of Completeness!

Every nonenpty subset of IR that is bounded above hus a supremum (least upper bourd). bER is a supremum of ASIR Recall a) lo is an upper bound for A, i.e. F for all as A, a < b.

Extended Real Numbers $\overline{R} = R U \Sigma - \infty, \infty \overline{\zeta}$ 007X HXER Rules -05 5 X X + 00 = 00 50 long us X = -05 X + -06 = -06 $X \neq 06$ co + (- c) is not allowed. $a \cdot co = \begin{cases} co & a > 0 \\ -c6 & a < 0 \\ illegal & a = 0 \end{cases}$ (for now)

If we work with TR we can take
the infimum / Suprement of any set.
If
$$A \subseteq R$$
 and is not bounded above in TR
 $\sup A = \infty$
 $\sup \phi = -\infty$
Recall $\lim_{n \to \infty} x_n = L$ if for all E70 there exists

$$x_{n} = 0$$

$$x_{n} = (-1)^{n}$$

$$x_{n} = r_{n} , r_{n} is an enumeration of $OA[O_{0}i]$
One are mathematical errors it one assumes
limits exist before establishing this is the cosc.
$$\lim_{n \to \infty} x_{n}$$$$

We say $M \in \overline{R}$ is an eventual upper bound for a sequence $\{x_n\}$ in \overline{R} if there exists Nsuch that $x_n \leq M$ for all $n \geq N$.

$$Def: \lim_{n \to \infty} \sup x_n = \inf \{ \{ M : M : S an e. u. b. \} \}$$

 $x_n \in \mathbb{R}$

 $E.g. x_{n} = (-1)^{n}$ $\lim_{n \to \infty} \sup_{x_n} x_n =$ M=1 is an e.u.b.L Any MK/ 13 not an e.u.b. given any N either $X_N = 1$ or $X_{NH} = 1$ and there is u = N with Xn > M. Any My 13 an e.u.b. Set of erub: [1,00] $\inf [1, \infty] = 1.$