Weierstrass Approximation Theorem Notes Nov 27,2011

The Weierstrass Approximation Theorem states that a function in C[a, b] can be uniformly
approximated by a polynomial. One way of expressing this fact is that given f € C[a, b] and
€ > 0, there exists p € P[a,b] such that |f(x) — p(x)| < € for every x € [a,b]. Using the
vocabulary of norms, this is equivalent to

1f = plle <e.

The same idea can also be expressed in terms of the closure of P[a, b] in C[a, b]. Recall
that given a set A in a metric space M, x € A if and only if for every e > 0, B.(x) N A + @.
Hence the Weierstrass Approximation Theorem asserts that C[a, b] € P[a, b]. But of course

Pla,b] < C[a, b]. Hence we have arrived at a concise statement of the theorem.

Theorem 1: (Weierstrass Approximation Theorem) P[a,b] = C[a, b], where closure is
taken with respect to the uniform norm.

You are already familiar with the idea of writing certain functions as power series. For ex-
ample,
o0 (—1)ntly2n+l
sin(x) = 32 D
n=0 n!
This series converges pointwise on all of R (verify this with the ratio test) and therefore
uniformly on any fixed interval [-R, R]. (Recall Theorem 10.10) Hence, given any € > 0, we

can find an N such that
1)n+1x2n+1

‘sm x)— Z( <e

for every x € [-m,7]. So sin can be approximated uniformly by polynomials on [-7, 7].
But functions that can be written as power series are special; in particular they are infinitely
differentiable — this is a consequence of Theorem 10.10.

The remarkable part about the Weierstrass Approximation Theorem is that every contin-
uous function, even the non-differentiable ones, can can be uniformly approximating by
polynomials. Interestingly, the proof of this fact can be reduced to showing that just one
non-smooth function, the absolute value function abs, can be uniformly approximated by
polynomials.

Proposition 2: abs € P[1,1].

Supposing for the moment we have proved this result, let’s see how this results in a fairly
easy proof of Theorem 1. First, we show that any translate of the absolute value function is

in P[0, 1]. We define
abs,(x) = |x - a.

Lemma 3: Foranya € R, abs, € P[0,1].
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Approximating abs, on [0,1].
Proof. Ifa<0ora >1,abs, is linear on [0,1] and hence in P[0,1].
Suppose 0 < a < 1and let € > 0. Let p be a polynomial such that
[p(x) —abs(x)| <e
for every x € [-1,1]. Define g(x) = p(x — a), so q is a polynomial. Then

sup |q(x) —abs(x)[ = sup |p(x - a) - |x - 4|

x€[0,1] x€[0,1]
= sup[p(x) - |x]|
x€[—a,1-a]
< sup |p(x)—abs(x)|<e.

xe[-1,1]
Hence ||q — abs, ||c[o,q] < €. Since g is a polynomial and € > 0 is arbitrary, abs, € P[0,1]. [J

A function f € C[0,1] is called piecewise linear if there is a partition 0 = xy < x; < --- < x,, = 1
such that the restriction of f to each interval [x,_j, x] is linear; we denote by PL[0, 1] the
collection of all such functions. Clearly any linear combination of functions of the form abs,
belongs to PL[0,1]. We now show that these functions span all of PL[0,1].

Proposition 4: Let f € PL[0,1], and let 0 = xy < x; < --- < x,, = 1 be a partition such that
f is linear on each interval Iy = [x4_1, x]. Then f is a linear combination of the functions 1
and {abs,, : 0 <k <n}.

Proof. Let S = span {abs,, : 0 < k < n}. Notice that
abs,, (x) +abs,, (x) =x+ (1-x) =1

Hence the constants belong to S.
For 0 <k <1, let .
Ri(x) = > (absy, (x) + (x —x¢)).

2
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Ry Jk Hy

Y

The functions Ry, Ji, and Hy.

Then Ry is a linear combination of 1, abs,, and abs,, and hence Ry € S.

Notice that Ry (x) = 0 if x < x; and Rx(x) = x — x4 otherwise. For 1< k < n let

Ry — Ry,
- T >
Xk = Xk-1

Jk

andlet J, =1and J,,; = 0. Then each J; € S and

0 i<k
]k(xj):{l j‘>k

Finally, let Hy = Jx — Jx+1 for 0 < k < n. Then Hy € S for each k, and

1 k=

Hi(x) = {o k#j.

Hence

n
D f(xi)Hy
k=0
is a piecewise linear function that agrees with f at each point x;. We conclude that
f=2 f(x)He.
k=0
Since each Hy € S, we conclude that f € S. [
We have seen that each abs, € P[0,1] and that each f € PL[0,1] is a linear combination of

functions abs,. To show that PL[0,1] < P[0,1] we now take advantage of the idea that the
metric space and the vector space structures of a normed vector space are compatible.

Proposition 5: Let X be a normed linear space and let W be a subspace of X. Then W is a
subspace of X.
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Proof. Let x,y € W. Let (x,,) and (y,) be sequences in W converging to x and y. Then
1(x + ) = (xn + yu)ll < ||x = xul| + ||y = yull and therefore (x, + y,) — (x + y). Hence
x + y € W. Similarly, ax, - ax and hence ax € W. So W is a subspace. ]

We can now prove the Weierstrass Approximation Theorem, at least for the domain [0,1].

Proposition 6: C[0,1] = P[0, 1].

Proof. Proposition 5 implies that P[0,1] is a subspace of C[0,1] since P[0,1] is. Suppose
f € PL[0,1]. Proposition 4 shows that f can be written as a finite linear combination of
functions abs,, and Proposition 3 implies that each abs, € P[0,1]. Since P[0, 1] is a subspace,

we conclude that f € P[0,1] and hence PL[0,1] € P[0,1]. Consequently PL[0,1] ¢ P[0,1].

From the proof of Carothers 11.2 it follows that C[0,1] = PL[0,1]. Hence P[0,1] = C[0,1].
]

Exercise 1: Use Proposition 6 to prove the Weierstrass Approximation Theorem for an aribi-
trary interval [a, b]. Hint: Given f € C[a, b], define g(x) = f(a + x(b — a). Approximate g
in C[0,1] by p € P[0,1], and define g(x) = p((x —a)/(b - a).

It remains to prove Proposition 2, which we do now.

Proof. For 0 < x <1, define Py(x) = 0 and for k > 0 define

x — P?
Pk+1(x) :Pk(x)+ k

We claim that 0 < P(x) < \/x for every k > 0 and that Py, > P for every k. This is certainly
true for k = 0. Suppose 0 < Pi(x) < /x. Then

2

Pk+1(x) = Pk(x) + X > k > Pk(x)

$0 Py,1(x) > 0. But also, since 0 < Py(x) < v/x <1, we have

x—P,f
2

= Pk(x)%(\/§+Pk(x))(\/9_€—Pk(x)) < Pe(x)+(Vx=Pi(x)) = Vx.

Pra(x) = Pe(x)+

Hence Py,1(x) < /x. We have therefore shown inductively that 0 < Py(x) < \/x for every
k > 0. As seen above, this also implies that Py,; > Pc(x).

It follows that for any fixed x € [0,1], {Px(x)} is monotone increasing and bounded above

by 1, and hence converges to a limit P(x) < 1. But then P(x) satisfies
— P(x)?
P(x) = P(x) + #

and hence
P(x)?* = x.
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Since P(x) > 0, we conclude that P(x) = \/x and P converges pointwise to the square root
function. Since the convergence is monotone and the limit function is continuous, Dini’s
theorem implies that the convergence is actually uniform.

Now let € > 0. Pick k so that ‘Pk(x) - \/§| < ¢ for all x € [0,1]. Define g(y) = Px(y?) for
y € [-1,1], so g is a polynomial. Then for any y € [-1,1],

q(y) —abs y| = ‘Pk()’z) - \/P| <e

since y? € [0,1]. Since € > 0 is arbitrary, we conclude that abs € P[0,1].



