The Weierstrass Approximation Theorem states that a function in $C[a, b]$ can be uniformly approximated by a polynomial. One way of expressing this fact is that given $f \in C[a, b]$ and $\epsilon>0$, there exists $p \in P[a, b]$ such that $|f(x)-p(x)| \leq \epsilon$ for every $x \in[a, b]$. Using the vocabulary of norms, this is equivalent to

$$
\|f-p\|_{\infty} \leq \epsilon .
$$

The same idea can also be expressed in terms of the closure of $P[a, b]$ in $C[a, b]$. Recall that given a set A in a metric space $M, x \in \bar{A}$ if and only if for every $\epsilon>0, B_{\epsilon}(x) \cap A \neq \varnothing$. Hence the Weierstrass Approximation Theorem asserts that $C[a, b] \subseteq \overline{P[a, b]}$. But of course $\overline{P[a, b]} \subseteq C[a, b]$. Hence we have arrived at a concise statement of the theorem.

Theorem 1: (Weierstrass Approximation Theorem) $\overline{P[a, b]}=C[a, b]$, where closure is taken with respect to the uniform norm.

You are already familiar with the idea of writing certain functions as power series. For example,

$$
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2 n+1}}{n!}
$$

This series converges pointwise on all of \mathbb{R} (verify this with the ratio test) and therefore uniformly on any fixed interval $[-R, R]$. (Recall Theorem 10.10) Hence, given any $\epsilon>0$, we can find an N such that

$$
\left|\sin (x)-\sum_{n=0}^{N} \frac{(-1)^{n+1} x^{2 n+1}}{n!}\right| \leq \epsilon
$$

for every $x \in[-\pi, \pi]$. So sin can be approximated uniformly by polynomials on $[-\pi, \pi]$. But functions that can be written as power series are special; in particular they are infinitely differentiable - this is a consequence of Theorem 10.10.

The remarkable part about the Weierstrass Approximation Theorem is that every continuous function, even the non-differentiable ones, can can be uniformly approximating by polynomials. Interestingly, the proof of this fact can be reduced to showing that just one non-smooth function, the absolute value function abs, can be uniformly approximated by polynomials.

Proposition 2: abs $\in \overline{P[-1,1]}$.

Supposing for the moment we have proved this result, let's see how this results in a fairly easy proof of Theorem 1 . First, we show that any translate of the absolute value function is in $\overline{P[0,1]}$. We define

$$
\operatorname{abs}_{a}(x)=|x-a| .
$$

Lemma 3: For any $a \in \mathbb{R}, \mathrm{abs}_{a} \in \overline{P[0,1]}$.

Approximating abs_{a} on $[0,1]$.

Proof. If $a \leq 0$ or $a \geq 1, \mathrm{abs}_{a}$ is linear on $[0,1]$ and hence in $P[0,1]$.
Suppose $0<a<1$ and let $\epsilon>0$. Let p be a polynomial such that

$$
|p(x)-\operatorname{abs}(x)|<\epsilon
$$

for every $x \in[-1,1]$. Define $q(x)=p(x-a)$, so q is a polynomial. Then

$$
\begin{aligned}
\sup _{x \in[0,1]}\left|q(x)-\operatorname{abs}_{a}(x)\right| & =\sup _{x \in[0,1]}|p(x-a)-|x-a|| \\
& =\sup _{x \in[-a, 1-a]}|p(x)-|x|| \\
& \leq \sup _{x \in[-1,1]}|p(x)-\operatorname{abs}(x)| \leq \epsilon .
\end{aligned}
$$

Hence $\left\|q-\operatorname{abs}_{a}\right\|_{C[0,1]} \leq \epsilon$. Since q is a polynomial and $\epsilon>0$ is arbitrary, abs $_{a} \in \overline{P[0,1]}$.
A function $f \in C[0,1]$ is called piecewise linear if there is a partition $0=x_{0}<x_{1}<\cdots<x_{n}=1$ such that the restriction of f to each interval $\left[x_{k-1}, x_{k}\right]$ is linear; we denote by $\operatorname{PL}[0,1]$ the collection of all such functions. Clearly any linear combination of functions of the form abs_{a} belongs to $\operatorname{PL}[0,1]$. We now show that these functions span all of $\operatorname{PL}[0,1]$.

Proposition 4: Let $f \in \operatorname{PL}[0,1]$, and let $0=x_{0}<x_{1}<\cdots<x_{n}=1$ be a partition such that f is linear on each interval $I_{k}=\left[x_{k-1}, x_{k}\right]$. Then f is a linear combination of the functions 1 and $\left\{\operatorname{abs}_{x_{k}}: 0 \leq k \leq n\right\}$.

Proof. Let $S=\operatorname{span}\left\{\operatorname{abs}_{x_{k}}: 0 \leq k \leq n\right\}$. Notice that

$$
\operatorname{abs}_{x_{0}}(x)+\operatorname{abs}_{x_{n}}(x)=x+(1-x)=1 .
$$

Hence the constants belong to S.
For $0 \leq k \leq 1$, let

$$
R_{k}(x)=\frac{1}{2}\left(\operatorname{abs}_{x_{k}}(x)+\left(x-x_{k}\right)\right) .
$$

The functions R_{k}, J_{k}, and H_{k}.

Then R_{k} is a linear combination of 1, abs $_{x_{0}}$, and $\mathrm{abs}_{x_{k}}$ and hence $R_{k} \in S$.
Notice that $R_{k}(x)=0$ if $x \leq x_{k}$ and $R_{k}(x)=x-x_{k}$ otherwise. For $1 \leq k \leq n$ let

$$
J_{k}=\frac{R_{k}-R_{k-1}}{x_{k}-x_{k-1}},
$$

and let $J_{0}=1$ and $J_{n+1}=0$. Then each $J_{k} \in S$ and

$$
J_{k}\left(x_{j}\right)= \begin{cases}0 & j<k \\ 1 & j \geq k\end{cases}
$$

Finally, let $H_{k}=J_{k}-J_{k+1}$ for $0 \leq k \leq n$. Then $H_{k} \in S$ for each k, and

$$
H_{k}\left(x_{j}\right)= \begin{cases}1 & k=j \\ 0 & k \neq j\end{cases}
$$

Hence

$$
\sum_{k=0}^{n} f\left(x_{k}\right) H_{k}
$$

is a piecewise linear function that agrees with f at each point x_{k}. We conclude that

$$
f=\sum_{k=0}^{n} f\left(x_{k}\right) H_{k} .
$$

Since each $H_{k} \in S$, we conclude that $f \in S$.
We have seen that each $\operatorname{abs}_{a} \in \overline{P[0,1]}$ and that each $f \in P L[0,1]$ is a linear combination of functions abs ${ }_{a}$. To show that $P L[0,1] \subseteq \overline{P[0,1]}$ we now take advantage of the idea that the metric space and the vector space structures of a normed vector space are compatible.

Proposition 5: Let X be a normed linear space and let W be a subspace of X. Then \bar{W} is a subspace of X.

Proof. Let $x, y \in \bar{W}$. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences in W converging to x and y. Then $\left\|(x+y)-\left(x_{n}+y_{n}\right)\right\| \leq\left\|x-x_{n}\right\|+\left\|y-y_{n}\right\|$ and therefore $\left(x_{n}+y_{n}\right) \rightarrow(x+y)$. Hence $x+y \in \bar{W}$. Similarly, $\alpha x_{n} \rightarrow \alpha x$ and hence $\alpha x \in \bar{W}$. So \bar{W} is a subspace.

We can now prove the Weierstrass Approximation Theorem, at least for the domain $[0,1]$.

Proposition 6: $\quad C[0,1]=\overline{P[0,1]}$.
Proof. Proposition 5 implies that $\overline{P[0,1]}$ is a subspace of $C[0,1]$ since $P[0,1]$ is. Suppose $f \in P L[0,1]$. Proposition 4 shows that f can be written as a finite linear combination of functions abs ${ }_{a}$, and Proposition 3 implies that each $\mathrm{abs}_{a} \in \overline{P[0,1]}$. Since $\overline{P[0,1]}$ is a subspace, we conclude that $f \in \overline{P[0,1]}$ and hence $P L[0,1] \subseteq \overline{P[0,1]}$. Consequently $\overline{\mathrm{PL}[0,1]} \subseteq \overline{P[0,1]}$. From the proof of Carothers 11.2 it follows that $C[0,1]=\overline{\mathrm{PL}[0,1]}$. Hence $\overline{P[0,1]}=C[0,1]$.

Exercise 1: Use Proposition 6 to prove the Weierstrass Approximation Theorem for an aribitrary interval $[a, b]$. Hint: Given $f \in C[a, b]$, define $g(x)=f(a+x(b-a)$. Approximate g in $C[0,1]$ by $p \in P[0,1]$, and define $q(x)=p((x-a) /(b-a)$.
It remains to prove Proposition 2, which we do now.
Proof. For $0 \leq x \leq 1$, define $P_{0}(x)=0$ and for $k \geq 0$ define

$$
P_{k+1}(x)=P_{k}(x)+\frac{x-P_{k}^{2}}{2} .
$$

We claim that $0 \leq P_{k}(x) \leq \sqrt{x}$ for every $k \geq 0$ and that $P_{k+1} \geq P_{k}$ for every k. This is certainly true for $k=0$. Suppose $0 \leq P_{k}(x) \leq \sqrt{x}$. Then

$$
P_{k+1}(x)=P_{k}(x)+\frac{x-P_{k}^{2}}{2} \geq P_{k}(x)
$$

so $P_{k+1}(x) \geq 0$. But also, since $0 \leq P_{k}(x) \leq \sqrt{x} \leq 1$, we have
$P_{k+1}(x)=P_{k}(x)+\frac{x-P_{k}^{2}}{2}=P_{k}(x)+\frac{1}{2}\left(\sqrt{x}+P_{k}(x)\right)\left(\sqrt{x}-P_{k}(x)\right) \leq P_{k}(x)+\left(\sqrt{x}-P_{k}(x)\right)=\sqrt{x}$.
Hence $P_{k+1}(x) \leq \sqrt{x}$. We have therefore shown inductively that $0 \leq P_{k}(x) \leq \sqrt{x}$ for every $k \geq 0$. As seen above, this also implies that $P_{k+1} \geq P_{k}(x)$.
It follows that for any fixed $x \in[0,1],\left\{P_{k}(x)\right\}$ is monotone increasing and bounded above by 1 , and hence converges to a limit $P(x) \leq 1$. But then $P(x)$ satisfies

$$
P(x)=P(x)+\frac{x-P(x)^{2}}{2}
$$

and hence

$$
P(x)^{2}=x .
$$

Since $P(x) \geq 0$, we conclude that $P(x)=\sqrt{x}$ and P_{k} converges pointwise to the square root function. Since the convergence is monotone and the limit function is continuous, Dini's theorem implies that the convergence is actually uniform.
Now let $\epsilon>0$. Pick k so that $\left|P_{k}(x)-\sqrt{x}\right|<\epsilon$ for all $x \in[0,1]$. Define $q(y)=P_{k}\left(y^{2}\right)$ for $y \in[-1,1]$, so q is a polynomial. Then for any $y \in[-1,1]$,

$$
|q(y)-\operatorname{abs} y|=\left|P_{k}\left(y^{2}\right)-\sqrt{y^{2}}\right|<\epsilon
$$

since $y^{2} \in[0,1]$. Since $\epsilon>0$ is arbitrary, we conclude that abs $\in P[0,1]$.

