
Weierstrass Approximation�eorem Notes Nov 27, 2011

�eWeierstrass Approximation�eorem states that a function in C[a, b] can be uniformly
approximated by a polynomial. One way of expressing this fact is that given f ∈ C[a, b] and
є > 0, there exists p ∈ P[a, b] such that ∣ f (x) − p(x)∣ ≤ є for every x ∈ [a, b]. Using the
vocabulary of norms, this is equivalent to

∣∣ f − p∣∣∞ ≤ є.

�e same idea can also be expressed in terms of the closure of P[a, b] in C[a, b]. Recall
that given a set A in a metric space M, x ∈ Ā if and only if for every є > 0, Bє(x) ∩ A ≠ ∅.
Hence theWeierstrass Approximation�eorem asserts that C[a, b] ⊆ P[a, b]. But of course
P[a, b] ⊆ C[a, b]. Hence we have arrived at a concise statement of the theorem.
�eorem 1: (Weierstrass Approximation �eorem) P[a, b] = C[a, b], where closure is
taken with respect to the uniform norm.

You are already familiar with the idea of writing certain functions as power series. For ex-
ample,

sin(x) = ∞∑
n=0

(−1)n+1x2n+1
n!

.

�is series converges pointwise on all of R (verify this with the ratio test) and therefore
uniformly on any �xed interval [−R, R]. (Recall �eorem 10.10) Hence, given any є > 0, we
can �nd an N such that

∣sin(x) − N∑
n=0

(−1)n+1x2n+1
n!

∣ ≤ є
for every x ∈ [−π, π]. So sin can be approximated uniformly by polynomials on [−π, π].
But functions that can be written as power series are special; in particular they are in�nitely
di�erentiable – this is a consequence of �eorem 10.10.

�e remarkable part about the Weierstrass Approximation �eorem is that every contin-
uous function, even the non-di�erentiable ones, can can be uniformly approximating by
polynomials. Interestingly, the proof of this fact can be reduced to showing that just one
non-smooth function, the absolute value function abs, can be uniformly approximated by
polynomials.

Proposition 2: abs ∈ P[−1, 1].
Supposing for the moment we have proved this result, let’s see how this results in a fairly
easy proof of �eorem 1. First, we show that any translate of the absolute value function is
in P[0, 1]. We de�ne

absa(x) = ∣x − a∣ .

Lemma 3: For any a ∈ R, absa ∈ P[0, 1].
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Approximating absa on [0, 1].
Proof. If a ≤ 0 or a ≥ 1, absa is linear on [0, 1] and hence in P[0, 1].
Suppose 0 < a < 1 and let є > 0. Let p be a polynomial such that

∣p(x) − abs(x)∣ < є
for every x ∈ [−1, 1]. De�ne q(x) = p(x − a), so q is a polynomial. �en

sup
x∈[0,1]

∣q(x) − absa(x)∣ = sup
x∈[0,1]

∣p(x − a) − ∣x − a∣∣
= sup
x∈[−a,1−a]

∣p(x) − ∣x∣∣
≤ sup
x∈[−1,1]

∣p(x) − abs(x)∣ ≤ є.

Hence ∣∣q − absa ∣∣C[0,1] ≤ є. Since q is a polynomial and є > 0 is arbitrary, absa ∈ P[0, 1].
A function f ∈ C[0, 1] is called piecewise linear if there is a partition 0 = x0 < x1 < ⋯ < xn = 1
such that the restriction of f to each interval [xk−1, xk] is linear; we denote by PL[0, 1] the
collection of all such functions. Clearly any linear combination of functions of the form absa
belongs to PL[0, 1]. We now show that these functions span all of PL[0, 1].
Proposition 4: Let f ∈ PL[0, 1], and let 0 = x0 < x1 < ⋯ < xn = 1 be a partition such that
f is linear on each interval Ik = [xk−1, xk]. �en f is a linear combination of the functions 1
and {absxk ∶ 0 ≤ k ≤ n}.
Proof. Let S = span{absxk ∶ 0 ≤ k ≤ n}. Notice that

absx0(x) + absxn(x) = x + (1 − x) = 1.
Hence the constants belong to S.

For 0 ≤ k ≤ 1, let
Rk(x) = 1

2
(absxk(x) + (x − xk)) .
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�e functions Rk, Jk, and Hk.

�en Rk is a linear combination of 1, absx0 , and absxk and hence Rk ∈ S.
Notice that Rk(x) = 0 if x ≤ xk and Rk(x) = x − xk otherwise. For 1 ≤ k ≤ n let

Jk = Rk − Rk−1
xk − xk−1 ,

and let J0 = 1 and Jn+1 = 0. �en each Jk ∈ S and
Jk(x j) = ⎧⎪⎪⎨⎪⎪⎩

0 j < k
1 j ≥ k.

Finally, let Hk = Jk − Jk+1 for 0 ≤ k ≤ n. �en Hk ∈ S for each k, and
Hk(x j) = ⎧⎪⎪⎨⎪⎪⎩

1 k = j
0 k ≠ j.

Hence
n∑
k=0

f (xk)Hk

is a piecewise linear function that agrees with f at each point xk. We conclude that

f = n∑
k=0

f (xk)Hk .

Since each Hk ∈ S, we conclude that f ∈ S.
We have seen that each absa ∈ P[0, 1] and that each f ∈ PL[0, 1] is a linear combination of
functions absa. To show that PL[0, 1] ⊆ P[0, 1] we now take advantage of the idea that the
metric space and the vector space structures of a normed vector space are compatible.

Proposition 5: Let X be a normed linear space and letW be a subspace of X. �enW is a
subspace of X.
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Proof. Let x , y ∈ W . Let (xn) and (yn) be sequences in W converging to x and y. �en∣∣(x + y) − (xn + yn)∣∣ ≤ ∣∣x − xn∣∣ + ∣∣y − yn∣∣ and therefore (xn + yn) → (x + y). Hence
x + y ∈W . Similarly, αxn → αx and hence αx ∈W . SoW is a subspace.

We can now prove the Weierstrass Approximation�eorem, at least for the domain [0, 1].
Proposition 6: C[0, 1] = P[0, 1].
Proof. Proposition 5 implies that P[0, 1] is a subspace of C[0, 1] since P[0, 1] is. Suppose
f ∈ PL[0, 1]. Proposition 4 shows that f can be written as a �nite linear combination of
functions absa, and Proposition 3 implies that each absa ∈ P[0, 1]. Since P[0, 1] is a subspace,
we conclude that f ∈ P[0, 1] and hence PL[0, 1] ⊆ P[0, 1]. Consequently PL[0, 1] ⊆ P[0, 1].
From the proof of Carothers 11.2 it follows that C[0, 1] = PL[0, 1]. Hence P[0, 1] = C[0, 1].
Exercise 1: Use Proposition 6 to prove theWeierstrass Approximation�eorem for an aribi-
trary interval [a, b]. Hint: Given f ∈ C[a, b], de�ne g(x) = f (a + x(b − a). Approximate g
in C[0, 1] by p ∈ P[0, 1], and de�ne q(x) = p((x − a)/(b − a).
It remains to prove Proposition 2, which we do now.

Proof. For 0 ≤ x ≤ 1, de�ne P0(x) = 0 and for k ≥ 0 de�ne
Pk+1(x) = Pk(x) + x − P2k

2
.

We claim that 0 ≤ Pk(x) ≤ √
x for every k ≥ 0 and that Pk+1 ≥ Pk for every k. �is is certainly

true for k = 0. Suppose 0 ≤ Pk(x) ≤ √
x. �en

Pk+1(x) = Pk(x) + x − P2k
2

≥ Pk(x)
so Pk+1(x) ≥ 0. But also, since 0 ≤ Pk(x) ≤ √

x ≤ 1, we have
Pk+1(x) = Pk(x)+x − P2k2

= Pk(x)+ 12(√x+Pk(x))(√x−Pk(x)) ≤ Pk(x)+(√x−Pk(x)) = √
x .

Hence Pk+1(x) ≤ √
x. We have therefore shown inductively that 0 ≤ Pk(x) ≤ √

x for every
k ≥ 0. As seen above, this also implies that Pk+1 ≥ Pk(x).
It follows that for any �xed x ∈ [0, 1], {Pk(x)} is monotone increasing and bounded above
by 1, and hence converges to a limit P(x) ≤ 1. But then P(x) satis�es

P(x) = P(x) + x − P(x)2
2

and hence
P(x)2 = x .
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Since P(x) ≥ 0, we conclude that P(x) = √
x and Pk converges pointwise to the square root

function. Since the convergence is monotone and the limit function is continuous, Dini’s
theorem implies that the convergence is actually uniform.

Now let є > 0. Pick k so that ∣Pk(x) −√
x∣ < є for all x ∈ [0, 1]. De�ne q(y) = Pk(y2) for

y ∈ [−1, 1], so q is a polynomial. �en for any y ∈ [−1, 1],
∣q(y) − abs y∣ = ∣Pk(y2) −√

y2∣ < є
since y2 ∈ [0, 1]. Since є > 0 is arbitrary, we conclude that abs ∈ P[0, 1].
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