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Integration of Step Functions

A partition P of [a, b] is a collection {xk}nk=0 such that

a = x0 < x1 < ⋯ < xn−1 < xn = b.

More succinctly, a partition is a �nite subset of [a, b] containing a and b. It is helpful to
think of a partition as dividing [a, b] into intervals Ik = [xk−1, xk], each of which having
length dxk = xk − xk−1. A partition P ′ is said to be �ner than P if P ′ ⊇ P . Given any two
partitions P and P ′, the common re�nement of the partitions is P ∪ P ′.
A step function is a function g ∶ [a, b] → R such that there exists a partition P for which
g is constant on each open interval (xk−1, xk) of the partition. Any partition that satis�es
this condition for g will be called a step partition (for g). Clearly every re�nement of a step
partition for g is also a step partition for g. We use the notation Step[a, b] for the set of all
step functions on [a, b].
�inking of integration as measuring signed area under the graph of function, it is relatively
straightforward to integrate step functions. If g is a step function with step partition P , and
if g(x) = gk on (xk−1, xk), we de�ne

∫
b

a
g =

n

∑
k=1

gkdxk .

One needs to verify, however, that this de�nition of integral does not depend on the choice
of step partition. �at is, if P and P ′ are two step partitions for g, it must hold that

n

∑
k=1

gkdxk =
n′

∑
k=1

g′kdx
′
k . (1)

By reducing to a common re�nement, it is enough to show that (1) holds when P ′ is a re-
�nement of P .
Exercise 1: Establish (1) when P ′ is a re�nement of P . First assume that P ′ = P ∪ {x′}, and
then deduce the result for a general re�nement by induction.

Properties of the Integral

Notice that the set of step functions on [a, b] is a vector subspace of B[a, b]. Indeed, if f
and g are step functions with step partitions P f and Pg , let P be the common re�nement
(so P is a step partition for f and for g). �en on each interval (xk−1, xk) we have f (x) = fk
and g(x) = gk and

( f + g)(x) = fk + gk .
Hence P is a step partition for f + g. Similarly, if f is step function, then so is c f for any
c ∈ R.
One of themost important properties of the integral is that themap taking f to ∫

b
a f is linear.
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�eorem 1: Let f and g be step functions on [a, b]. �en

∫
b

a
( f + g) = ∫

b

a
f + ∫

b

a
g ,

and for any α ∈ R,

∫
b

a
α f = α∫

b

a
f .

Exercise 2: Prove�eorem 1 directly from the de�nition of the integral of step functions.

You may have wondered when you were �rst introduced to integration why it was de�ned
in terms of signed area under the graph of a function. �is is done exactly to ensure that the
integral is linear.

Another elementary property of the integral is its montonicity (which also relies on the
signed area interpretation of the integral).

�eorem 2: Let f and g be step functions on [a, b] such that f (x) ≥ g(x) for every x ∈
[a, b]. (�at is, f ≥ g.) �en

∫
b

a
f ≥ ∫

b

a
g .

Proof. Let P be a step partition for f and g. �en for each k we have fk ≥ gk and hence

∫
b

a
f =

n

∑
k=1

fkdxk ≥
n

∑
k=1

gkdxk = ∫
b

a
g .

Suppose f is a step function. Any step partition for f is also a step partition for ∣ f ∣ and hence
∣ f ∣ is also a step function. Moreover, for any x ∈ [a, b] we have

− ∣ f (x)∣ ≤ f (x) ≤ ∣ f (x)∣

and hence by�eorem 1 and�eorem 2 we have

−∫
b

a
∣ f ∣ ≤ ∫

b

a
f ≤ ∫

b

a
∣ f ∣ .

We have therefore established the following estimate, which can be thought of as a relation-
ship between the signed area ∫

b
a f and the unsigned area ∫

b
a ∣ f ∣.

�eorem 3: Let f be a step function on [a, b]. �en

∣∫
b

a
f ∣ ≤ ∫

b

a
∣ f ∣ .

One �nal property of the integral is that it can be computed by breaking the domain up into
pieces and computing the integral on each piece.
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�eorem 4: Suppose f is a step function on [a, b] and suppose a ≤ c ≤ b. �en

∫
b

a
f = ∫

c

a
f + ∫

b

c
f .

Proof. Let P be any step partition for f . Without loss of generality, we can assume that
xN = c for some N (otherwise, we can consider a �ner partition by adding the point c).
�en

∫
b

a
f =

n

∑
k=1

fkdxk =
N

∑
k=1

fkdxk +
n

∑
k=N+1

fkdxk = ∫
c

a
f + ∫

b

c
f .

Riemann Integrable Functions

We would like to extend the de�nition of the integral to a broader class of functions than
step functions. Given a function f ∈ B[a, b], we would like to de�ne an integral for f that
preserves the properties of�eorems 1, 2, 3 and 4 of the integral for step functions. Although
we will not be able to do this for all functions in B[a, b], we will be able to do so for a large
class of functions.

Given a function f ∈ B[a, b], and step functions g and G with g ≤ f ≤ G, we would want to
have

∫
b

a
g ≤ ∫

b

a
f ≤ ∫

b

a
G .

We de�ne the upper Riemann integral of f to be

∫
b

a
f = inf

G∈Step[a,b]
G≥ f

∫
b

a
G

and the lower Reimann integral of f to be

∫
b

a
f = sup

g∈Step[a,b]
g≤ f

∫
b

a
g .

For any f ∈ B[a, b], it is an immediate consequence of the de�nition that

∫
b

a
f ≤ ∫

b

a
f .
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Moreover, if f is a step function, then

∫
b

a
f = sup

g∈Step[a,b]
g≥ f

∫
b

a
g

≥ ∫
b

a
f

≥ inf
G∈Step[a,b]

G≥ f

∫
b

a
G

= ∫
b

a
f .

Hence if f is a step function, then

∫
b

a
f = ∫

b

a
f = ∫

b

a
f .

�e class of function for which we have equality of the upper and lower Riemann integrals is
known as the set of Riemann integrable functions,R[a, b]. If f ∈ R[a, b], then we de�ne

∫
b

a
f = ∫

b

a
f (= ∫

b

a
f ) .

We have just shown therefore that Step[a, b] ⊆ R[a, b], and that the Riemann integral of a
step function agrees with the integral we have already de�ned for step functions.

It is perhaps surprising that not every function in B[a, b] is Riemann integrable. An example
of such a function is given by χQ.

Exercise 3: Prove that ∫
1
0 χQ = 1 but ∫

1
0 χQ = 0.

Upper and Lower Riemann Sums

Sometimes it is convenient to describe the upper and lower Riemann integrals of a function
in terms of limits of certain near optimal step functions.

Let f ∈ B[a, b] and let P be a partition of [a, b]. Given this partition, we de�ne Mk =
supx∈[xk−1 ,xk] f (x) andmk = inf x∈[xk−1 ,xk] f (x). We then associate with f andP step functions
f P and f P that are equal toMk andmk respectively on (xk−1, xk) and are equal to f (xk) for
each k. �e upper Riemann sum (for the function f and partition P) is

U( f ,P) = ∫
b

a
f P =

n

∑
k=1
Mkdxk

and the lower Riemann sum

L( f ,P) = ∫
b

a
f
P
=

n

∑
k=1
mkdxk .
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Exercise 4: Given a function f ∈ B[a, b] and a step function G ≥ f with, show that for any
є > 0 there exists a partition P ′ such that є + ∫

b
a G ≥ U( f ,P ′) Prove a similar result for step

functions g ≤ f . Conclude that

∫
b

a
f = inf

P
U( f ,P)

and

∫
b

a
f = sup

P
L( f ,P).

Characterization of Riemann Integrable Functions

Given the de�nition of Riemann integrability, it is not necessarily easy to determine whether
a given function is Riemann integrable. On the face of things, onewould have to compute the
upper and lower Riemann integrals, and then verify that they are the same. �e following
result helps identify Riemann integrable functions without having to compute upper and
lower Riemann integrals.

Proposition 5: Let f ∈ B[a, b]. �en the following are equivalent.

1. f ∈ R[a, b].

2. For any є > 0 there exist step functions g and G with g ≤ f ≤ G and such that

∫
b

a
(G − g) < є.

3. For any є > 0 there exists a partition P such that

U( f ,P) < L( f ,P) + є.

Proof. Suppose f is Riemann integrable. Let G be a step function such that G ≥ f and

∫
b

a
G < ∫

b

a
f + є/2.

Let g be a step function such that g ≤ f and

∫
b

a
g > ∫

b

a
f − є/2.

�en

∫
b

a
G < ∫

b

a
f + є/2 = ∫

b

a
f + є/2 < ∫

b

a
g + є.

So

∫
b

a
(G − g) < є.
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Conversely, suppose f is not Riemann integrable. Let є = ∫
b
a f − ∫

b
a f . �en for any step

functions g and G with g ≤ f ≤ G we have

∫
b

a
g ≤ ∫

b

a
f = ∫

b

a
f − є ≤ ∫

b

a
G − є.

Hence

∫
b

a
(G − g) ≥ є

for all step functions G and g with g ≤ f ≤ G.
�e equivalence of statements 2 and 3 is le� for the reader.

Exercise 5: Prove the equivalence of statements 2 and 3 in Proposition 5.

One important application of Proposition 5 is that it allows for an easy proof that C[a, b] ⊆
R[a, b].

�eorem 6: C[a, b] ⊆ R[a, b].

Proof. Let f ∈ C[a, b]. Let є > 0. Since f is uniformly continuous, there exists a δ > 0 such
that if ∣x − z∣ < δ, then ∣ f (x) − f (z)∣ < є/(b − a). Pick N ∈ N such that (b − a)/N < δ, and
let P be the partition {a + k(b − a)/N ∶ 0 ≤ k ≤ N}. For each k, we de�ne

Mk = sup
x∈Ik

f (x) mk = inf
x∈Ik

f (x).

�en
0 ≤ Mk −mk ≤

є
b − a .

Hence

U( f ,P) =
N

∑
k=1
Mkdxk ≤

N

∑
k=1

(mk +
є

b − a) dxk =
N

∑
k=1
mkdxk + є = L( f ,P) + є.

So by Proposition 5, we see that f is Riemann integrable.

Properties of the Integral

We would like to extend�eorems 1, 2, 3 and 4 to all ofR[a, b]. �e extension of �eorem
2 is immediate from the de�nition.

�eorem 7: Suppose f , g ∈ R[a, b] with f ≤ g. �en

∫
b

a
f ≤ ∫

b

a
g .
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Proof. For any step function H with g ≤ H we have f ≤ H as well and hence

∫
b

a
f = ∫

b

a
f = inf

H∈Step[a,b]
H≥ f

∫
b

a
H ≤ inf

H∈Step[a,b]
H≥g

∫
b

a
H = ∫

b

a
g = ∫

b

a
g .

To establish the linearity of the integral we need to work a little harder. Notice that if f is
Riemann integrable, then for every n there exists a step function Gn such that Gn ≥ f and

∫
b

a
Gn < ∫

b

a
f + 1

n
= ∫

b

a
f + 1

n
.

Hence there is a sequence of step functions Gn, each with Gn ≥ f , such that limn ∫
b
a Gn =

∫
b
a f . A similar sequence (gn) of step functions with gn ≤ f also exists.

�eorem 8: Suppose f , g ∈ R[a, b]. �en f + g ∈ R[a, b] and

∫
b

a
( f + g) = ∫

b

a
f + ∫

b

a
g . (2)

Also, for every α ∈ R, α f ∈ R[a, b] and

∫
b

a
α f = α∫

b

a
f . (3)

Proof. Let f , g ∈ R. Let є > 0 and let (h f ,n) and (H f ,n) be step functions such that h f ,n ≤
f ≤ H f ,n and such that

lim
n ∫

b

a
h f ,n = ∫

b

a
f = lim

n ∫
b

a
H f ,n .

�at such step functions exists is a consequence of the Riemann integrability of f . Let (hg ,n)
and (Hg ,n) be similar sequences for g.
Notice that for each n, H f ,n +Hg ,n ≥ f + g. Hence for each n,

∫
b

a
( f + g) = inf

H∈Step[a,b]
H≥( f+g)

∫
b

a
H ≤ ∫

b

a
(H f ,n +Hg ,n) = ∫

b

a
H f ,n + ∫

b

a
Hg ,n .

Taking the limit in n we conclude

∫
b

a
f + g ≤ ∫

b

a
f + ∫

b

a
g .

A similar argument with the sequences (h f ,n) and (h f ,n) yields the inequality

∫
b

a
f + ∫

b

a
g ≤ ∫

b

a
f + g .
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However, it is always true that ∫
b
a ( f + g) ≥ ∫

b
a ( f + g), so we conclude that

∫
b

a
( f + g) = ∫

b

a
( f + g) = ∫

b

a
f + ∫

b

a
g .

Hence ( f + g) is integrable and equation (2) holds.
�e proof that α f is integrable and that (3) holds is le� as an exercise.

Exercise 6: Suppose f ∈ R[a, b] and α ∈ R. Show that α f ∈ R[a, b] and ∫
b
a α f = α ∫

b
a f .

In order to prove the extension of �eorem 3 to all of R[a, b], we need to show �rst that if
f ∈ R[a, b], then ∣ f ∣ ∈ R[a, b]. �is is perhaps most easily done by �rst showing that the
positive part of f is Riemann integrable.

Given a function f ∈ B[a, b], we de�ne f ∨ 0 by

( f ∨ 0)(x) =max(x , 0).

Notice that f ≤ f ∨ 0, and if if f , g ∈ B[a, b] satisfy g ≤ f , then g ∨ 0 ≤ f ∨ 0. It follows that

f + g ≤ f ∨ 0 + g ∨ 0

and hence
( f + g) ∨ 0 ≤ ( f ∨ 0 + g ∨ 0) ∨ 0 = f ∨ 0 + g ∨ 0.

With these facts in hand, we can now show the positive part of f is Riemann integrable
whenver f is.

Proposition 9: Suppose f ∈ R[a, b]. �en f ∨ 0 ∈ R[a, b].

Proof. Let f ∈ R[a, b] and let є > 0 Let g and G be step functions such that g ≤ f ≤ G and
such that that

∫
b

a
(G − g) < є.

Now notice that G ∨ 0 and g ∨ 0 are step functions and

g ∨ 0 ≤ f ∨ 0 ≤ G ∨ 0.

Moreover,

G ∨ 0 = ((G − g) + g) ∨ 0 ≤ (G − g) ∨ 0 + g ∨ 0 = (G − g) + (g ∨ 0).

Hence
G ∨ 0 − g ∨ 0 ≤ G − g

and therefore

∫
b

a
G ∨ 0 − g ∨ 0 ≤ ∫

b

a
G − g < є.

Hence by Proposition 5, f ∨ 0 is Riemann integrable.
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Corollary 10: If f ∈ R[a, b], then ∣ f ∣ ∈ R[a, b] and

∫
b

a
f ≤ ∫

b

a
∣ f ∣ .

Proof. Notice that

f = ( f ∨ 0) − (− f ∨ 0) and ∣ f ∣ = ( f ∨ 0) + (− f ∨ 0).

Since ∣ f ∣ is a sum of Riemann integrable functions, it is Riemann integrable. Moreover,

∫
b

a
f = ∫

b

a
( f ∨ 0) − ∫

b

a
(− f ∨ 0) ≤ ∫

b

a
( f ∨ 0) + ∫

b

a
(− f ∨ 0) = ∫

b

a
∣ f ∣ .

�e �nal property to extend is the domain decomposition of the integral.

Proposition 11: Let f ∈ B[a, b] and let c ∈ [a, b]. �en f ∈ R[a, b] if and only if f ∈ R[a, c]
and f ∈ R[c, b].

Proof. Suppose f ∈ R[a, b]. Let є > 0 and let G and g be step functions such that g ≤ f ≤ G
and such that ∫

b
a (G − g) < є. �e restrictions of G and g to [a, c] also satisfy g ≤ f ≤ G.

Moreover, since G − g ≥ 0,

∫
c

a
(G − g) ≤ ∫

b

a
(G − g) < є.

So the restriction of f to [a, c] is Riemann integrable, and a similar argument shows that the
restriction of f to [c, b] is Riemann integrable.
Conversely, suppose f ∈ R[a, c] and f ∈ R[c, b]. For notational convenience, let f1 and f2
be the restrictions of f to [a, c] and [c, b] respectively. Let є > 0 and let g1 and G1 be step
functions on [a, c] such that g1 ≤ f1 ≤ G1 and

∫
c

a
(G1 − g1) < є/2.

Similarly, let g2 and G2 be step functions on [c, b] such that g2 ≤ f2 ≤ G2 and

∫
c

a
(G2 − g2) < є/2.

Let g be the step function on [a, b] that is equal to g1 on [a, c), equal to g2 on (c, b] and
equal to f (c) at c. �en g ≤ f and

∫
b

a
g = ∫

c

a
g + ∫

b

c
g = ∫

c

a
g1 + ∫

b

c
g2.

Let G be a similarly de�ned step function with respect to G1 and G2, so G ≥ f and

∫
b

a
G = ∫

c

a
G1 + ∫

b

c
G2.
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�en g ≤ f ≤ G on [a, b] and

∫
b

a
(G − g) = ∫

c

a
(G1 − g1) + ∫

b

c
(G2 − g2) < є/2 + є/2 = є.

Hence f is Riemann integrable on [a, b].

With this last result in hand, it is not di�cult to establish the extension of �eorem 4.

�eorem 12: Let f ∈ R[a, b]. �en for any c ∈ [a, b] we have

∫
b

a
f = ∫

c

a
f + ∫

b

c
f .

Exercise 7: Prove�eorem 12.
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