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Lengths of subsets of R

Wewould like to �nd a function that determines the length of an arbitrary subset ofR. �is
would be a function ℓ ∶ P(R) → [0,∞]. It is not obvious what the length of a generic
set should be. Nevertheless, it seems clear that such a function should satisfy the following
properties.

1. ℓ([a, b]) = b − a if a ≤ b.

2. ℓ(A+ c) = ℓ(A) for every c ∈ R.

3. ℓ(rA) = ∣r∣ ℓ(A) for every r ∈ R.

4. Monotonicity: if A ⊆ B, then ℓ(A) ≤ ℓ(B).

5. Finite additivity: If A and B are disjoint, then ℓ(A∪ B) = ℓ(A) + ℓ(B).

Exercise 1: Show that monotonicity is a consequence of �nite additivity.

�e �rst three properties express that ℓ generalizes our notion of the lengths of intervals and
that it is compatible with our geometric understanding of translations and scalings. Property
4) indicates that length can only grow as a set increases. Property 5) allows us to compute
the length of a set by breaking it into two disjoint pieces and adding the length of each piece.

We will also want to be able to add the length of countably many sets, and this poses a
challenge to our intuition of length. How long is Z, and how long isQ? It seems clear that Z
should have length 0. One way to argue this is to note that we can breakZ up into countably
many disjoint pieces, and that each piece has length 0. Perhaps we can estimate the length
of Z by adding the lengths of the individual pieces, and arrive at the estimate that ℓ(Z) = 0.
However, this same argument would apply toQ, and we would be forced to conclude thatQ
has length 0 as well! �is is perhaps surprising, since one might want to make the case that
Q has in�nite length. �e underlying question seems to be whether the length of a union
of disjoint pieces can be di�erent depending on the way in which the pieces are (disjointly)
arranged in the line. Our answer to this question will be that length is independent of order,
and we express this answer by one of the following two properties.

6. Countable subadditivity: if {Ak}∞k=1 is a countable collection of sets, then

ℓ(∪kAk) ≤ ∑
k
ℓ(Ak).

7. Countable additivity: if {Ak}∞k=1 is a countable collection of disjoint sets, then

ℓ(∪kAk) = ∑
k
ℓ(Ak).
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Of these, property 6) seems to be the weaker one. It says that the length of a union of pieces
can be estimated (from above) by summing the lengths of the pieces. �is is a very mild
condition to assume. Property 7) appears to be somewhat stronger, stating that the length of
a disjoint union of pieces is exactly equal to the sum of the lengths of the pieces, and perhaps
onewould not want tomake such a strong requirement about a length function. Fortunately,
we do not have to decide which of these properties is appropriate – they are equivalent.

Exercise 2: Suppose ℓ ∶ P(R) → [0,∞]. Show that ℓ satis�es property 7) if and only if it
satis�es properties 5) and 6). �at is, ℓ is countably additive if and only if it is �nitely additive
and countably subadditive. �e following exercise will be helpful.

Exercise 3: Suppose {Ak} is a countable collection of sets. Show that there exist disjoint sets
Bk such that Bk ⊆ Ak and ∪Bk = ∪Ak. Hint: Let Bk = Ak ∖ [∪k−1j=1 Ak] for k > 1.

Unfortunately, we have already asked for too much from a length function. We will show
later in the course that there does not exist a length function satisfying properties 1), 2),
and 7) (or equivalently properties 1), 2), 5), and 6)). One approach to this problem is to
restrict our attention to length functions only satisfying properties 1)-5). But this severely
restricts our ability to do limiting operations. Moreover, it turns out that the generalizations
of properties 1)-5) toR3 are again too strong. �at is, there does not exist a volume function
onP(R3) that gives volume 1 to the unit cube, is invariant under rigidmotions, and is �nitely
additive. �is stunning fact is the content of the Banach-Tarski paradox – a special case of
the paradox states the unit sphere can be broken into �nitely many pieces which can then
be reassembled into the sphere of radius 100 (leaving no gaps and making no overlaps)!

Our approach to these di�culties will be to keep properties 1)-7), but to restrict the domain
of our length function to “nice” sets for which these properties hold.

Outer measure

Suppose A is a set, and {Ik} is a countable collection of bounded open intervals such that
A ⊆ ∪{Ik}. We call such a collection of intervals ameasuring cover for A. Every measuring
cover for A gives an upper bound for its length: it should be no longer than

∑
k
ℓ(Ik),

where we de�ne ℓ((a, b)) = b − a. With this intuition in mind, we de�ne a function m∗ ∶
P(R) → [0,∞] that is a candidate length function.

De�nition: Let A ⊆ R. �e Lebesgue outer measure of A, denoted by m∗(A), is

inf{∑
k
ℓ(Ik) ∶ {Ik} is a measuring cover for A}.

We should considerm∗(A) to be a kind of best estimate from above of the length ofA (where
covers by open intervals are used to form the estimate).
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Exercise 4: Suppose A is countable. Prove that m∗(A) = 0. Hint: If A = {a1, a2, . . .}, cover
ak with an interval of length є/2k.
Sets with outer measure zero are important, and we say that such sets have measure zero
or are null sets. It should be noted that not every set with zero outer measure is countable.
Recall that the Cantor set is uncountable; we will soon be able to show that the Cantor set
also has measure zero.

Since m∗ is only an upper estimate for length, it would seem that it might not make a good
candidate for a length function. However, it satis�es a remarkable number of the properties
1)-7).

�eorem 1: Let [a, b] be a bounded closed interval. �en m∗([a, b]) = b − a.

Proof. Consider the measuring cover consisting of the single interval {(a − є, b + є)}. It
follows that

m∗([a, b]) ≤ b − a + 2є

for any є > 0 and hence m∗([a, b]) ≤ b − a.
On the other hand, let {Ik} be any measuring cover of [a, b]. We will show that ∑ ℓ(Ik) ≥
b − a to conclude that m∗([a, b]) = b − a. Since [a, b] is compact, we can �nd a �nite
subcover Ik1 , . . . , Ikn , and it is enough to show that∑n

j=1 ℓ(Ik j) ≥ b − a.
Let J1 = (a1, b1) be an element of {Ik1 , . . . , Ikn} that contains a. Now for each k > 1, if
bk−1 ∈ (a, b), let Jk be an element of {Ik1 , . . . , Ikn} that contains bk−1; such an element exists
since {Ik1 , . . . , Ikn} is a cover of [a, b]. Otherwise we stop this procedure with a set Jm such
that bm > b. Although we have been a little informal in the de�nition of the sets Jk, their
de�nition can be made more precise using the Principle of Recursive De�nition.

Notice that a ∈ (a1, b1), so
ℓ(J1) ≥ (b1 − a).

Similarly, for each k with 1 < k < m, bk−1 ∈ (ak , bk), so

ℓ(Jk) ≥ (bk − bk−1).

Finally, Jm must satisfy bm > b, so (bk−1, b] ⊆ Jm and

ℓ(Jm) ≥ (b − bm−1).

It follows that
m

∑
k=1
ℓ(Jk) ≥ (b1 − a) + (b2 − b1) +⋯ + (b − bm−1) = b − a.

Since the sets Jk are clearly distinct (the sequence of their right endpoints is strictly increas-
ing) we have

n

∑
j=1
ℓ(I jk) ≥

m

∑
k=1
Jk ≥ b − a.
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We have thus veri�ed thatm∗ satis�es property 1) of length functions. �atm∗ satis�es 4) is
obvious from its de�nition, and it is an easy veri�cation to determine that m∗ also satis�es
2) and 3).

Exercise 5: Show that m∗ satis�es properties 2) and 3).

Exercise 6: If I is any bounded interval, prove that m∗(I) is its length. If I is unbounded,
prove that m∗(I) = ∞. Hint: Use monotonicity!
Now no function satisfying 1)-4) can also satisfy 5) and 6) simultaneously. Nor can it satisfy
7) as this is equivalent to 5) and 6). So m∗ can satisfy at most one of 5) and 6), and it turns
out that m∗ is countably subadditive, but not �nitely additive.

Proposition 2: Let {Ak} be a countable collection of subsets of R. �en

m∗(∪Ak) ≤
∞

∑
k=1
m∗(Ak).

Proof. Let є > 0 and for each Ak, let {Ik, j}∞j=1 be a measuring cover for Ak such that

∑
j
ℓ(Ik, j) ≤ m∗(Ak) +

є
2k
.

�en {Ik, j}∞k, j=1 is a measuring cover for ∪kAk and hence

m∗(∪Ak) ≤
∞

∑
k=1

∞

∑
j=1
ℓ(Ik, j ≤

∞

∑
k=1
m∗(Ak) +

є
2k

= [
∞

∑
k=1
m∗(Ak)] + є.

Since this is true for every є > 0,

m∗(∪Ak) ≤
∞

∑
k=1
m∗(Ak).

Restoring �nite additivity

We have established that m∗ satis�es properties 1)-4) and 6), and we have claimed that it
cannot satisfy 5) for no such function exists. Hence there exist disjoint sets A and B such
that

m∗(A∪ B) ≠ m∗(A) +m∗(B).
Since m∗ is countably subadditive, it follows then that we have the strict inequality

m∗(A∪ B) < m∗(A) +m∗(B).

�e structure of the sets A and B must be so complicated that our estimation procedure
de�ned bym∗must be assigning some of the length of A∪B to both A and B, and hencem∗
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must be determining an overestimate for their length. Wewould like to restrict our attention
to sets that don’t exhibit this phenomenon.

Suppose E is a set contained in an interval (a, b). How can we determine if m∗ is deter-
mining an overestimate for the length of E? We can decompose (a, b) into two pieces,
(a, b) ∩ E = E and (a, b) ∩ Ec. If m∗(E) and m∗(Ec ∩ (a, b)) are not “overestimates”, then
we should have �nite additivity for E and Ec ∩ (a, b) and hence

m∗(E) +m∗((a, b) ∩ Ec) = m∗((a, b)) = b − a. (1)

We can perform a similar construction even if E is not contained in (a, b) by replacing
m∗(E) with m∗(E ∩ (a, b)) in (1). �is leads us to:
Condition CC′We say E satis�es condition CC′ if for every bounded open interval (a, b),

b − a = m∗((a, b) ∩ E) +m∗((a, b) ∩ Ec).

Condition CC′ is a minimal requirement for a set to have a length well estimated by m∗. A
seemingly stronger condition is:

Condition CC We say E satis�es condition CC (the Caratheodory Condition) if for every
set A ⊆ R,

m∗(A) = m∗(A∩ E) +m∗(A∩ Ec).

Since m∗([a, b]) = b − a, it is clear that condition CC implies condition CC′. It is perhaps
surprising that condition CC′ also implies condition CC.

Proposition 3: A set E ⊆ R satis�es condition CC if and only if it satis�es condition CC′.

Proof. Weneed only show that conditionCC′ implies conditionCC. Let E be a set satisfying
condition CC′, and let A ⊆ R. By countable subadditivity, we know that

m∗(A) ≤ m∗(A∩ E) +m∗(A∩ Ec).

So it is enough to show that m∗(A) ≥ m∗(A∩ E) +m∗(A∩ Ec).
Let є > 0 and let {Ik} be a measuring covering for A such that

∑ ℓ(Ik) ≤ m∗(A) + є.

Since E satis�es condition CC′, for every k, m∗(Ik) = m∗(Ik ∩ E) + m∗(Ik ∩ Ec). Now
A∩ E ⊆ ∪(Ik ∩ E) and A∩ Ec ⊆ ∪(Ik ∩ Ec). So by countable subadditivity,

m∗(A∩ E) ≤ ∑
k
m∗(Ik ∩ E), and

m∗(A∩ Ec) ≤ ∑
k
m∗(Ik ∩ Ec).
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But then

m∗(A∩ E) +m∗(A∩ Ec) ≤ ∑
k
[m∗(Ik ∩ E) +m∗(Ik ∩ Ec)]

= ∑
k
m∗(Ik) = ∑

k
ℓ(Ik) ≤ m∗(A) + є.

Since this inequality holds for every є > 0,

m∗(A∩ E) +m∗(A∩ Ec) ≤ m∗(A)
as required.

Exercise 7: We chose to use open intervals rather than closed intervals in the de�nition of
condition CC′ because it simpli�ed the previous proof. Historically, however, closed inter-
vals were used. Let CC′′ be the analogue of condition CC′ using closed bounded intervals.
Show that conditions CC′ and CC′′ are equivalent.

Condition CC (or equivalently condition CC′) is exactly the condition we need to have to
restore �nite additivity to m∗.

Proposition 4: Let E1 and E2 be disjoint sets that satisfy condition CC. �en

m∗(E1 ∪ E2) = m∗(E1) +m∗(E2).
Proof. Notice that (E1 ∪ E2)∩ E1 = E1 and (E1 ∪ E2)∩ (E1)c = E2 since E1 and E2 are disjoint.
�en, since E1 satis�es condition CC,

m∗(E1 ∪ E2) = m∗((E1 ∪ E2) ∩ E1) +m∗((E1 ∪ E2) ∩ (E1)c) = m∗(E1) +m∗(E2).

Although condition CC is unintuitive at �rst, the underlying idea is easy – a set E is mea-
surable if it can “carve” an arbitrary set A into two pieces A∩E and A∩Ec such that the sum
of the lengths of the pieces equals the length of A.

De�nition: A set E ⊆ R is measurable if it satsi�es condition CC. �e collection of all
measurable sets is denoted by M. If E is measurable, the value of m∗(E) is called the
Lebesgue measure of E. �e restriction of m∗ toM is denoted by m.

Although verifying condition CC can be di�cult in practice, it is easy to show that null sets
satisfy this condition.

Exercise 8: Suppose m∗(N) = 0. Prove that N is measurable.

We are are well on ourway to showing thatm satis�es properties of 1)-7) of a length function.
One question arises, however. Are the sets appearing in properties 1)-7) measurable? �at
is, if E and F are measurable, are E+ c, rE, and E∪F measurable? And if {Ek} is a collection
of measurable sets, is ∪Ek measurable? �e answers to these questions will all be a�rmative,
and we turn next to showing that the collection of measurable sets is closed under countable
set operations.
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Measurable sets and set operations

A collectionA of subsets of a set X is called (set) algebra in X if it is closed under �nite set
operations (unions, intersections, and complements). �at is, if A, B ∈ A, then so are A∪ B,
A∩B, and Ac. An algebra is the right domain for performing �nite set operations. To verify
that a collection of sets A is an algebra, it is only necessary to verify that it is closed under
unions and complements – deMorgan’s Laws imply A∩ B = (Ac ∪ Bc)c.
Exercise 9: Let A be the collection of subsets of R that are either �nite, or have �nite com-
plement. Show thatA is an algebra. �is is known as the algebra of �nite and co-�nite sets.
An algebra is the right domain for performing �nite set operations, but we also want to con-
sider unions of the form ∪∞k=1Ek. �at is, we wish to consider countably many set operations.
A σ-algebra is an algebra that is also closed under countable unions and countable inter-
sections. Just as for algebras, in practice one only needs to verify that a σ-algebra is closed
under countable unions since deMorgan’s Laws imply the formula ∩kEk = (∪kEck)c.
Exercise 10: Let {Aα}α∈I be a family of σ-algebras in X. Show that ∩αAα is also a σ-algebra
in X.

Exercise 11: Let C be a collection of subsets of X. Show that there exists a unique smallest σ-
algebra containing C (i.e. a σ-algebra that contains C and is contained in any other σ-algebra
containing C.) We call this the σ-algebra generated by C.
We will now show that,M, the collection of measurable sets is a σ-algebra. To do so, we
need to verify thatM is closed under taking complements, �nite unions, and countable
unions. Showing thatM is closed under taking complements is nearly immediate from the
de�nition.

Lemma 5: If E is measurable, so is Ec.

Proof. Suppose E is measurable. �en for any set A

m∗(A) = m∗(A∩ E) +m∗(A∩ Ec).

But E = (Ec)c, so for any set A,

m∗(A) = m∗(A∩ (Ec)c) +m∗(A∩ Ec).

Hence Ec is measurable.

Showing thatM is closed under �nite unions is a little harder since it is easy to get bogged
down in the set notation. But the underlying idea is easy. Suppose E and F are measurable
and A is an arbitrary set. We want to show that E ∪ F can “carve” A, so

m∗(A) = m∗(A∩ (E ∪ F)) +m∗(A∩ ((E ∪ F)c)).

We proceed as follows. First carve A using F, so

m∗(A) = m∗(A∩ F) +m∗(A∩ F c)). (2)
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F

E

A

= = =

= = =

Figure 1: E ∪ F is measurable.

Now carve A∩ F c using E, so

m∗(A∩ F c) = m∗(A∩ F c ∩ E) +m∗(A∩ F c ∩ Ec)
= m∗(A∩ F c ∩ E) +m∗(A∩ (F ∪ E)c). (3)

Finally, carve A∩ (E ∪ F) using F to get

m∗(A∩ (E ∪ F)) = m∗(A∩ (E ∪ F) ∩ F) +m∗(A∩ (E ∪ F) ∩ F c)
= m∗(A∩ F) +m∗(A∩ E ∩ F c). (4)

From (2) and (3) we have

m∗(A) = m∗(A∩ F) +m∗(A∩ F c ∩ E) +m∗(A∩ (F ∪ E)c),

and from (4) we conclude that

m∗(A) = m∗(A∩ (E ∪ F)) +m∗(A∩ (F ∪ E)c).

We have therefore proved the following (and hence thatM is an algebra).

Proposition 6: Suppose E and F are measurable. �en E ∪ F is measurable.

To work with countable unions, we need the following technical lemma.

Lemma 7: Suppose E1, . . . , En are disjoint and measurable. �en for any set A ⊆ R,

m∗(A∩ (∪nk=1Ek)) =
n

∑
k=1
m∗(A∩ Ek).

8
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Proof. We proceed by induction on n. �e case where n = 1 is obvious. Suppose that for
some n ∈ N that if E1, . . . , En are measurable and disjoint, then for any set A

m∗(A∩ (∪nk=1Ek)) =
n

∑
k=1
m∗(A∩ Ek).

Now consider a collection of n + 1 disjoint measurable sets E1, . . . , En+1. �en since En+1 is
measurable and is disjoint from the other sets Ek,

m∗(A∩ (∪n+1k=1Ek)) = m∗(A∩ (∪n+1k=1Ek) ∩ En+1) +m∗(A∩ (∪n+1k=1Ek) ∩ Ecn+1)
= m∗(A∩ En+1) +m∗(A∩ (∪nk=1Ek)).

From the inductive hypothesis we have

m∗(A∩ (∪nk=1Ek)) =
n

∑
k=1
m∗(A∩ Ek).

So we conclude that

m∗(A∩ (∪n+1k=1Ek)) =
n+1

∑
k=1
m∗(A∩ Ek).

Proposition 8: Suppose {Ek} is a countable collection of disjoint measurable sets. �en
∪Ek is measurable.

Proof. Let E = ∪∞k=1Ek. Let A be an arbitrary subset of R; to show that E is measurable it is
enough to show that

m∗(A) ≥ m∗(A∩ E) +m∗(A∩ Ec).
Now for each n we have

m∗(A) = m∗(A∩ ∪nk=1Ek) +m∗(A∩ (∪nk=1Ek)c).

From monotonicity, it follows that

m∗(A∩ (∪nk=1Ek)c) ≥ m∗(A∩ Ec)

and from Lemma 7 it follows that

m∗(A∩ ∪nk=1Ek) =
n

∑
k=1
m∗(A∩ Ek).

Hence
m∗(A) ≥

n

∑
k=1
m∗(A∩ Ek) +m∗(A∩ Ec)

for each n. Taking the limit as n →∞ we conclude

m∗(A) ≥
∞

∑
k=1
m∗(A∩ Ek) +m∗(A∩ Ec).

9
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Now A∩ E = ∪∞k=1(A∩ Ek) so countable subadditivity implies
∞

∑
k=1
m∗(A∩ Ek) ≥ m∗(A∩ ∪∞k=1Ek) = m∗(A∩ E).

We conclude that
m∗(A) ≥ m∗(A∩ E) +m∗(A∩ Ec).

We have now shown that a countable union of disjoint measurable sets is measurable. �e
case where the sets are not necessarily disjoint reduces to the disjoint case, however, as the
following exercise shows.

Exercise 12: If {Ek} is a countable collection of measurable sets, show that there is a count-
able collection of disjoint measurable sets {Fk} such that ∩Ek = ∩Fk. Conclude that ∩Ek is
measurable.

In summary, in this section we have proved the following.

�eorem 9: M is a σ-algebra.

Measurable sets and topology

Determining if a given set is measurable from the de�nition can be di�cult in practice, and
it will be helpful to have other characterizations of measurablility. Until now, we have only
determined that null sets (and in particular �nite and countable sets) are all measurable.
What about intervals?

Proposition 10: For any a ∈ R, (a,∞) is measurable.

Proof. Let E = (a,∞). To show E is measurable, it is enough to show that E satis�es condi-
tion CC′. Let I = (c, d) be an interval. We want to show that

m∗(I) = m∗(I ∩ E) +m∗(I ∩ Ec). (5)

�ere are three cases. If a ≥ d, then I ∩ E = ∅ and I ∩ Ec = I. So

m∗(I ∩ E) +m∗(I ∩ Ec) = 0 +m∗(I) = m∗(I).

Similarly, if a ≤ c, then I ∩ Ec = ∅ and I ∩ E = I, so

m∗(I ∩ E) +m∗(I ∩ Ec) = m∗(I) + 0 = m∗(I).

Finally, if c < a < d, then I ∩ E = (a, d) and I ∩ Ec = (c, a], so

m∗(I ∩ E) +m∗(I ∩ Ec) = m∗((a, d)) +m∗((c, a]) = d − a + a − c = d − c = m∗(I).

So in all cases, (5) holds, so (a,∞) is measurable.
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To show that arbitrary intervals are measurable is now easy using the fact thatM is a σ-
algebra and that null sets (and hence �nite sets) are measurable.

Corollary 11: Every interval I is measurable.

Exercise 13: Prove Corollary 11.

Every open subset ofR can be written as a countable disjoint union of open intervals. Since
M is a σ-algebra containing the open intervals, we conclude thatM contains every open
set.

�eorem 12: Every open set is measurable.

Recall from Exercise 11 that every collection of subsets of R is contained in a smallest σ-
algebra. �e smallest σ-algebra containing the open sets is called the collection of Borel
sets, and is denoted by B. Examples of Borel sets include open sets, closed sets, Fσ sets, Gδ
sets, Fσδ sets and so forth. SinceM is a σ-algebra containing the open sets, it must contain
every Borel set

�eorem 13: B ⊆M.

Exercise 14: Let E ⊆ R. Prove that for any є > 0 there exist an open set U ⊇ E such that
m∗(U) < m∗(E) + є and a Gδ set G ⊇ E such that m∗(G) = m∗(E).
�e previous exercise shows that every set can be approximated from above, in terms of
outer measure, by an open set or aGδ set. However, it is not true in general that one can �nd
a Gδ set containing E such that

m∗(G ∖ E) = 0.

Indeed, suppose this were possible, and let N = G ∖ E, so N is a null set. We can write

E = G ∖ (G ∖ E) = G ∩ N c .

SinceG and N aremeasurable, then so is E! �at is, although we can estimate any set E from
above by a Gδ set G, we cannot ensure that the le� over bits G ∖ E have measure zero unless
E is measurable. �is leads us to a characterization of measurable sets in terms of open sets.

�eorem 14: �e following are equivalent.

1. E is measurable.

2. For every є > 0 there is an open set U ⊇ E such that m∗(U ∖ E) < є.

3. �ere exists a Gδ set G ⊇ E such that m∗(G ∖ E) = 0.

Proof. We have already argued that 3) implies 1). �at 2) implies 3) is also easy to see. For
each n ∈ N, �nd an open set Un containing E such that m∗(Un ∖ E) < 1/n. Let G = ∩nUn.

11
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�en G ∖ E is contained in Un ∖ E for every n and hence m∗(G ∖ E) < 1/n for every n. So
m∗(G ∖ E) = 0.

It remains to show that 1) implies 2). First suppose that E is measurable and has �nite mea-
sure. Let є > 0 and let U be an open set containing E such that m∗(U ∖ E) < є – such an
open set exists by Exercise 14. Notice that U = E ∪ (U ∖ E). Since U and E are measurable,

m∗(U) = m∗(E) +m∗(U ∖ E).

Since m∗(U) < m∗(E) + є we conclude that

m∗(U ∖ E) < є.

Now suppose E is measurable with possibly in�nite measure. For each n ∈ N, let En =
E ∩ [−n, n]. Each En is measurable. Let є > 0. For each n, �nd an open setUn containing En
such that m∗(Un ∖ En) < є/2n. Let U = ∪Un, so E ⊆ U . �en from countable subadditivity
and monotonicity we conclude

m∗(U ∖ E) = m∗(∪n(Un ∖ E)) ≤ ∑m∗(Un ∖ E) ≤ ∑m∗(Un ∖ En) < ∑
є
2n

= є.

�e previous result is a rigorous statement of the sentiment that every measurable set is
“nearly” an open set. Our characterization of measurability in terms of open sets can also
be used to show that every measurable set is “nearly” a closed set by using the fact that E is
measurable if and only if Ec is measurable.

Corollary 15: �e following are equivalent.

1. E is measurable.

2. For every є > 0 there is an closed set V ⊆ E such that m∗(E ∖ V) < є.

3. �ere exists a Fσ set F ⊆ E such that m∗(E ∖ F) = 0.

Exercise 15: Prove Corollary 15.

Exercise 16: Suppose m∗(E) is �nite. Show that E is measurable if and only if for any є > 0
there is a set A that is a �nite union of bounded intervals such thatm∗(A∆E) < є. Show that
the intervals can be taken as either open or closed.

Exercise 17: Show that a set E ⊆ R is measurable if and only if for every є > 0 there exists an
open set U and a closed set V such that V ⊆ E ⊆ U and such that

m∗(U ∖ V) < є.

Exercise 18: If E is measurable, show that E + h is measurable and that rE is measurable.
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Figure 2: Corollary 17. Gk = E1 ∖ Ek.

Continuity properties of m

Consider a nested increasing sequence of measurable sets E1 ⊆ E2 ⊆ ⋯. In some sense
the limit of this sequence should be ∪Ek. Lebesgue measure satis�es a kind of continuity
(continuity from below) inasmuch as the measure of this limit is equal to the limit of the
measures of the sets Ek.

Proposition 16: Let E1 ⊆ E2 ⊆ ⋯ be an increasing sequence of measurable sets and let
E = ∪∞k=1Ek. �en

lim
n
m(En) = m(E).

Proof. De�ne G1 = E1 and Gk = Ek ∖ Ek−1 for k > 1. �en the sequence {Gk} consists of
disjoint measurable sets satisfying ∪nk=1Gk = En for every n and ∪∞k=1Gk = E. But then by
countable additivity,

m(E) =
∞

∑
k=1
m(Gk) = lim

n→∞

n

∑
k=1
m(Gk).

By �nite additivity we have, since ∪nk=1Gk = En,
n

∑
k=1
m(Gk) = m(∪nk=1Gk) = m(En).

Hence
lim
n→∞

m(En) = m(E).

�ere is a corresponding continuity from above. Given nestedmeasurable sets E1 ⊇ E2 ⊇ ⋯,
we would like to claim thatm(∩Ek) = limnm(En). But this is false, in general. For example,

13
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if Ek = (k,∞), then m(Ek) = ∞ for every k but m(∩Ek) = 0. �e lurking in�nite measure
prevents us from seeing what is occurring at the �nite scales. Fortunately, this problem can
be avoided by requiring that E1 (or in fact any single Ek) has �nite measure.

Corollary 17: Let E1 ⊇ E2 ⊇ ⋯ be a decreasing sequence of measurable sets such that
m(E1) < ∞ and let E = ∩∞k=1Ek. �en

lim
n→∞

m(En) = m(E).

Exercise 19: Prove Corollary 17. Hint: LetGk = E1 ∖Ek and apply Proposition 16. Use Figure
2 to help visualize the setup.

Summary

In these notes we have attempted to construct a length function on P(R) satisfying prop-
erties 1)-7). Although we were not able to do so, we were able to �nd a candidate function
m∗ that satis�ed 1)-4) and 5) (i.e. everything except �nite additivity). We restricted the do-
main of m∗ to the σ-algebra of setsM for which �nite additivity holds (a large σ-algebra
containing the Borel sets) and obtained Lebesgue measure.

�eorem 18: Lebesgue measure m ∶ M → R satis�es the following properties.

1. m([a, b]) = b − a if a ≤ b.

2. If E is measurable, so is E + c for any c ∈ R and m(E + c) = m(E).

3. If E is measurable, so is rE for any r ∈ R and m(rE) = ∣r∣m(E).

4. If E and F are measurable and E ⊆ F, then m(E) ≤ m(F).

5. If E and F are measurable and disjoint then m(E ∪ F) = m(E) +m(F).

6. If {Ek} is a countable collection of measurable sets, then

m(∪Ek) ≤ ∑
k
m(Ek).

7. If {Ek} is a countable collection of disjoint measurable sets, then

m(∪Ek) = ∑
k
m(Ek).
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