1. Carothers 11.65, and the following follow up problem:

Show that if $\int_{a}^{b} |K(x,t)| dt \le 1$ for all $x \in [a,b]$, then the Arzela-Ascoli theorem implies that given any function f, the sequence $(T^{(n)}(f))$ has a subsequence that converges in C[a,b].

2. Suppose $f \in \mathcal{R}[a, b]$ and $\alpha \in \mathbb{R}$. Show that $\alpha f \in \mathcal{R}[a, b]$ and

$$\int_{a}^{b} \alpha f = \alpha \int_{a}^{b} f$$

- **3.** Show that the uniform limit of Riemann integrable functions is Riemann integrable. Conclude that $\mathcal{R}[a, b]$ is a closed subset of B[a, b].
- **4.** Determine if $\chi_{\Delta} \in \mathcal{R}[0, 1]$, where Δ is the Cantor set.