1. Carothers 3.18
2. Carothers 3.23
3. (Young's Inequality) Let $p \in(1, \infty)$ and define q by $\frac{1}{p}+\frac{1}{q}=1$. Suppose $a, b \geq 0$. Show

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

and that the inequality is strict unless either $a^{p-1}=b$ or $b^{q-1}=a$ (in which case both of these equalities hold!).

Hint: If $a=0$ or $b=0$ the result is obvious. Fix $b>0$ and consider $f(a)=a^{p} / p+$ $b^{q} / q-a b$ on $(0, \infty)$. Your job is to show $f(a) \geq 0$ with equality if and only if $a^{p}=b$. Sounds like an optimization problem! Look at the first and second derivatives of f.

Remark: You proof should clearly note the place where $p>1$ is used.
4. Carothers 3.34
5. Carothers 3.36
6. Carothers 3.39
7. Carothers 3.46
8. Carothers 4.3
9. Carothers 4.11

