Name:
Solutions

1. Let \mathcal{E} be the 3-d region bounded determined by the inequalities $x^{2}+y^{2} \leq 4$ and $0 \leq z \leq$ $x+2$.
a. Write down an iterated integral in terms of x, y and z variables that is equivalent to

$$
\iiint_{\mathcal{E}} z d V
$$

Do NOT compute the value of the integral.

$$
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{x+2} z d z d y d x
$$

b. Write down an interated intergral in terms of cylindrical coordinates r, θ and z that is equivalent to the integral from part a. Do NOT compute the value of the integral.

$$
\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{r \cos \theta+2} z r d z d r d \theta
$$

2. Consider the upper half sphere \mathcal{E} given by $z \geq 0$ and $x^{2}+y^{2}+z^{2} \leq 1$.
a. Write down an iterated integral in spherical coordinates that could be used to compute the value of

$$
\iiint_{\mathcal{E}} z d V
$$

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{1} \rho \cos \phi \rho^{2} \sin \phi d \rho d \phi d \theta
$$

b. Compute the value of the integral. You might find a substitution is helpful to deal with the ϕ variable.

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{\pi / 2} & \left.\frac{s^{4}}{4}\right|_{j} ^{1} \cos \phi \sin \phi d \phi d \theta \\
& =\frac{2 \pi}{4} \int_{0}^{\pi / 2} \cos \phi \sin \phi d \phi \\
& =\frac{\pi}{2} \int_{0}^{1} u d u \quad u=\sin \phi \\
& =\left.\frac{\pi}{2} \frac{u^{2}}{2}\right|_{0} ^{1}=\frac{\pi}{4}
\end{aligned}
$$

