Name:

1. The temperature on metal plate is given by

$$
T(x, y)=100 e^{-\left(x^{2}+y^{2}\right) / 100}
$$

where $T$ is measured in ${ }^{\circ} \mathrm{C}$ and $x$ and $y$ are measured in inches from the center of the plate.

1. Compute $\vec{\nabla} T(x, y)$.

$$
\begin{aligned}
\frac{\partial T}{\partial x} & =100 e^{-\left(x^{2}+y^{2}\right) / 100} \cdot \frac{(-2 x)}{100} \\
& =-2 x e^{-\left(x^{2}+y^{2}\right) / 100} \\
\frac{\partial T}{\partial y} & =-2 y e^{-\left(x^{2}+y^{2}\right) 100}
\end{aligned}
$$

$$
\vec{\nabla} T=\left\langle\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}\right\rangle=-2 e^{-\left(x^{2}+y^{2}\right) / 100}\langle x, y\rangle{ }^{\circ} \mathrm{C} / \text { inch }
$$

2. At high noon a bug is standing at position $P(0,1)$ and has velocity $\mathbf{v}=\langle-2,1\rangle$ inches/second.
(a) What temperature does the bug see at high noon?

$$
T(0,1)=100 e^{-1 / 100}{ }^{\circ} \mathrm{C}
$$

(b) What is the rate of change in temperature that the bug sees at high noon?

$$
\text { At } P(0,1), \vec{\nabla} T=-2 e^{-1 / 100}\langle 0,1\rangle \text {. }
$$

Rate of chare of temperature:

$$
\begin{aligned}
\vec{\nabla} T \cdot \vec{V} & =-2 e^{-1 / 100}\langle 0,1\rangle \cdot\langle-2,1\rangle \\
& =-2 e^{-1 / 1000}{ }^{0} \mathrm{C} / \mathrm{s}
\end{aligned}
$$

2. Consider a position function $\mathbf{r}(t)=\left\langle\sin \left(2 t, e^{-3 t}-1\right\rangle\right.$. For another function $T(x, y)$ you know that

$$
\begin{aligned}
T(0,0) & =7 \\
T_{x}(0,0) & =3 \\
T_{y}(0,0) & =-2
\end{aligned}
$$

Compute

$$
\frac{d}{d t} T(\mathbf{r}(t))
$$

at $t=0$.

$$
\begin{aligned}
& \vec{r}(t)=\langle x(t), y(t)\rangle \\
& \vec{r}^{\prime}(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle=\left\langle 2 \cos (2 t),-3 e^{-3 t}\right\rangle \\
& \vec{r}^{\prime}(0)=\langle 2,-3\rangle
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d t} T(\vec{v}(t)) & =\frac{\partial T}{\partial x} \frac{d x}{d t}+\frac{\partial T}{\partial y} \frac{d y}{d t} \\
& =3 \cdot 2+(-2)(-3) \\
& =6+6 \\
& =12
\end{aligned}
$$

