Name: Solutions

1. Show that the point $P(1,2,3)$ lies on the plane defined by $2 x+3 y-z=5$.

$$
2 \cdot 1+3 \cdot 2-3=2+6-3=5
$$

2. Find the "parametric equation" of the line that passes through $P(1,2,3)$ and is perpendicular to the plane from problem 1.

Normal to plane: $\langle 2,3,-1\rangle$

Line:

$$
\begin{aligned}
&\langle 1,2,3\rangle+t\langle 2,3,-1\rangle \\
&=\langle 1+2 t, 2+3 t, 3-t\rangle
\end{aligned}
$$

3. Find a vector perpendicular to the vectors $\mathbf{v}=\langle 1,2,1\rangle$ and $\mathbf{w}=\langle 3,1,1\rangle$.

$$
\begin{aligned}
\vec{V} \times \stackrel{\rightharpoonup}{w}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\imath & 2 & 1 \\
3 & 1 & 1
\end{array}\right| & =\frac{(2-1) \hat{\imath}-(1-3) \hat{\jmath}+(1-6) \hat{k}}{}
\end{aligned}
$$

4. Find the equation of a plane that passes through the points $O(0,0,0), P(1,2,1)$ and $Q(3,1,1)$.

$$
\left.\begin{array}{l}
\overrightarrow{O P}=\langle 1,2,1\rangle \\
\overrightarrow{O Q}=\langle 3,1,1\rangle
\end{array}\right] \quad \begin{gathered}
\overrightarrow{O P} \times \overrightarrow{O Q}=\langle 1,2,-5\rangle \\
\text { from problem } 3,
\end{gathered}
$$

$$
\text { Plane: } \quad 1 \cdot x+2 y-5 z=0 \Longleftarrow \text { place thru }
$$

orig
5. Find the equation of a plane that is parallel to the plane you found in problem 4 but that passes through the point $R(5,1,0)$.

