Name:

1. Consider the vector $\mathbf{v}=\langle 1,2,1\rangle$. Find its length and find a unit vector pointing in the same direction as \mathbf{v}

$$
\begin{aligned}
& |\vec{V}|=\left(1^{2}+2^{2}+1^{2}\right)^{1 / 2}=\sqrt{6} \\
& \text { unit vector: }\left\langle\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right\rangle
\end{aligned}
$$

2. Find the angle between the vectors $\mathbf{v}=\langle 1,2,1\rangle$ and $\mathbf{w}=\langle 0,0,-1\rangle$. Your answer will use an inverse trig function. That's ok!

$$
\vec{v} \cdot \vec{w}=|\vec{v}||\vec{w}| \cos \theta
$$

$$
\Rightarrow \theta=\arccos \left(\frac{\vec{v} \cdot \vec{w}}{|\vec{v}| \vec{w} \mid}\right)
$$

$$
|\vec{v}|=\sqrt{6},|\vec{w}|=1, \quad \vec{V} \cdot \vec{w}=-1 .
$$

$$
\theta=\arccos \left(\frac{-1}{\sqrt{6} \cdot 1}\right)=\arccos \left(-\frac{1}{\sqrt{6}}\right)=1.99 \ldots \mathrm{rad}
$$

3. A steel bar sitting on the ground is pulled by a cable pointing in the (by now familiar) direction $\mathbf{v}=\langle 1,2,1\rangle$ and subjected to a tension force in the cable of 500 N . Find the tension force vector \mathbf{F}_{c} in the cable.

Unit vector: $\vec{u}=\left\langle\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right\rangle$

$$
\vec{F}_{c}=500 N\left\langle\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right\rangle=\left\langle\frac{500}{\sqrt{6}}, \frac{1000}{\sqrt{5}}, \frac{500}{\sqrt{6}}\right\rangle N
$$

4. This same steel bar has a mass of 102 kg and therefore is subject to a gravitational force $\mathbf{F}_{g}=\langle 0,0,-1000 \mathrm{~N}\rangle$. Find the total force (gravitational and tension) acting on the bar.

$$
\vec{F}=\vec{F}_{c}+\vec{F}_{8}=\left\langle\frac{500}{\sqrt{6}}, \frac{1000}{\sqrt{6}}, \frac{500}{\sqrt{6}}-1000\right\rangle \mathrm{N}
$$

