Name:
Stokes's Theorem: If \mathcal{C} is the boundary of a 'nice' region \mathcal{S},

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

so long as the normal \mathbf{n} and the orientation of C are compatible.
In the two problems below you will set up, but not evaluate the integrals on both side of this equation where \mathcal{S} is the hemisphere $x^{2}+y^{2}+z^{2}=1$ with $y \geq 0$ and where

$$
\mathbf{F}=\langle y, z,-x\rangle .
$$

The hemisphere is given the orientation with unit normal point towards the origin.

1. Write down an integral expressing $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Your answer should be of the form $\int_{a}^{b} g(t) d t$ where a and b are numbers and where $g(t)$ is an explicit function. Please do not compute the integral. Please be careful about orientation/sign.

$$
\begin{aligned}
& \vec{r}(t)=\langle\cos t, 0, \sin t\rangle \\
& \vec{r}^{\prime}(t)=\langle-\sin t, 0, \cos t\rangle \\
& \vec{F}(\vec{r}(t))=\langle 0, \sin (t),-\cos (t)\rangle \\
& F(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)=-\cos ^{2}(t) \\
& \left.\int_{0} F \cdot d\right\rangle=\int_{0}^{2 \pi}-\cos ^{2}(t) d t=-\pi
\end{aligned}
$$

Recall: \mathcal{S} is the hemisphere $x^{2}+y^{2}+z^{2}=1$ with $y \geq 0$ and unit normal pointing towards the origin and

$$
\mathbf{F}=\langle y, z,-x\rangle .
$$

2. Write down an integral expressing $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S$. Your answer should be in the form of an iterated integral of an explicit integrand that is a function of two parameter variables. Please do not compute the integral.

$$
\begin{aligned}
& y=\sqrt{1-x^{2}-z^{2}} \\
& \vec{\Gamma}(u, v)=\left(u, \sqrt{1-u^{2}-v^{2}}, v>\right. \\
& \frac{1}{r_{u}}=\left\langle 1, \frac{-u}{\sqrt{1-u^{2}-u^{2}}}, 0\right\rangle \\
& \vec{r}_{v}=\left\langle 0, \frac{-v}{\sqrt{1-u^{2}-u^{2}}}, 1\right\rangle \\
& \stackrel{\rightharpoonup}{r}_{u} \times \vec{r}_{v}=\left\langle\frac{-u}{\sqrt{1-u^{2}-s^{2}}}-1, \frac{-v}{\sqrt{1-u^{2}-v^{2}}}\right. \\
& \overrightarrow{\vec{F}}(\vec{r}(a, v))=\left\langle\sqrt{1-u^{2}-v^{2}}, v,-u\right. \\
& \vec{\nabla}_{\times} \vec{F}=\langle-1,1,-1\rangle \\
& \vec{\nabla}_{\times} \vec{F} \cdot \vec{r}_{u} \times \vec{r}_{v}=-1+\frac{v+u}{\sqrt{1-u^{2} v^{2}}} \\
& \begin{aligned}
& \int_{-1}^{1} \int_{-\sqrt{1-u^{2}}}^{\sqrt{1-v^{2}}}-1+\frac{V+u}{\sqrt{1-u^{2}-u^{2}}} d v d u \\
&=\int_{0}^{1} \int_{0}^{2 \pi}\left[-1+\frac{r}{\sqrt{\sin \theta+r \cos \theta}} \sqrt{1-u^{2}}\right.
\end{aligned} r d \theta d r .
\end{aligned}
$$

