Name:

Stokes's Theorem: If C is the boundary of a 'nice‘ region \mathcal{S},

$$
\iint_{\mathcal{S}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}
$$

so long as the normal \mathbf{n} and the orientation of C are compatible.
In the two problems below you will set up, but not evaluate the integrals on both side of this equation where \mathcal{S} is the hemisphere $x^{2}+y^{2}+z^{2}=1$ with $y \geq 0$ and where

$$
\mathbf{F}=\langle y, z,-x\rangle .
$$

The hemisphere is given the orientation with unit normal pointing towards the origin.

1. Write down an integral expressing $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Your answer should be of the form $\int_{a}^{b} g(t) d t$ where a and b are numbers and where $g(t)$ is an explicit function. Please do not compute the integral. Please be careful about orientation/sign.

Recall: \mathcal{S} is the hemisphere $x^{2}+y^{2}+z^{2}=1$ with $y \geq 0$ and unit normal pointing towards the origin and

$$
\mathbf{F}=\langle y, z,-x\rangle .
$$

2. Write down an integral expressing $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S$. Your answer should be in the form of an iterated integral of an explicit integrand that is a function of two parameter variables. Please do not compute the integral.
