Name: Solutions

1. The following vector field is conservative:

$$
\mathbf{F}=\left\langle y \cos (x y), x \cos (x y)+3 y^{2}\right\rangle
$$

a) Find all potential functions for \mathbf{F}.

$$
\frac{\partial f}{\partial x}=y \cos (x y) \Rightarrow f(x, y)=\sin (x y)+g(y)
$$

$$
\left.\begin{array}{l}
\frac{\partial f}{\partial y}=x \cos (x y)+g^{\prime}(y) \\
\frac{\partial f}{\partial y}=x \cos (x y)+3 y^{2}
\end{array}\right] \Rightarrow g(y)=y^{3}+c
$$

b) Doing very little work, compute $\int_{C} \mathbf{F} \cdot d \mathbf{R}$ where C is the straight line from the origin to the point $(1, \pi)$.

$$
f(1, \pi)-f(0,0)=\left(\sin (\pi)+\pi^{3}\right)-\left(\sin (0)+0^{3}\right)
$$

2. Recall that Green's Theorem states that for any curve C traversing the boundary (counterclockwise) of a simply connected region \mathcal{D}

$$
\int_{C} P d x+Q d y=\iint_{\mathcal{D}}\left(-\frac{\partial P}{\partial y}+\frac{\partial Q}{\partial x}\right) d A
$$

Use Green's theorem to compute the line integral $\int_{C} y^{3} d x-x^{3} d y$ where C is the circle $x^{2}+y^{2}=9$ given the counter clockwise orientation. For full credit, your solution must employ Green's Theorem.

$$
\begin{aligned}
\int_{C} y^{3} d x-x^{3} d y & =\iint_{D}\left(-3 y^{2}-3 x^{2}\right) d A(x, 4) \\
& =\int_{0}^{2 \pi} \int_{0}^{3}-3 r^{2} r d r d \theta \\
& =\int_{0}^{2 \pi}-\left.\frac{3}{4} r^{4}\right|_{0} ^{3} d \theta
\end{aligned}
$$

