Name:

1. The following vector field is conservative:

$$
\mathbf{F}=\left\langle y \cos (x y), x \cos (x y)+3 y^{2}\right\rangle
$$

a) Find all potential functions for \mathbf{F}.
b) Doing very little work, compute $\int_{C} \mathbf{F} \cdot d \mathbf{R}$ where C is the straight line from the origin to the point $(1, \pi)$.
2. Recall that Green's Theorem states that for any curve C traversing the boundary (counterclockwise) of a simply connected region \mathcal{D}

$$
\int_{C} P d x+Q d y=\iint_{\mathcal{D}}\left(-\frac{\partial P}{\partial y}+\frac{\partial Q}{\partial x}\right) d A
$$

Use Green's theorem to compute the line integral $\int_{C} y^{3} d x-x^{3} d y$ where C is the circle $x^{2}+y^{2}=9$ given the counter clockwise orientation. For full credit, your solution must employ Green's Theorem.

