Name: \qquad

Quiz \#6

In class. 25 minutes. No textbook or notes or calculator. 30 points total.

1. (5pts) Use the chain rule to find $\partial z / \partial s$:
$z=\ln \left(x^{2}+y^{2}\right), \quad x=s \ln t, \quad y=t e^{s}$
2. (5 pts) Show that any function of the form $u=f(x-a t)$ is a solution of the "one-way wave equation"

$$
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0
$$

3. (10 pts) Use a tree diagram to write out the chain rule for the given case:

$$
T=f(u, v, w), \quad u=u(x, y, z), \quad v=v(x, y, z), \quad w=w(x, y, z)
$$

(Both a correctly-labeled tree and the equations of the chain rule are required. Correct partial derivative notation is important.)
4. Consider this function and point:

$$
f(x, y, z)=x^{2} y z-z^{3}, \quad P(2,-1,1)
$$

(a) (5 pts) Find the gradient of f.
(b) (5 pts) Evaluate and simplify the gradient at P.

