$\left(16^{\mathrm{pts}}\right) \quad 1$.
(a) (8 pts) Prove that $\lim _{(x, y) \rightarrow(1,1)} \frac{x y-1}{x+y^{2}-2}$ does not exist.
(b) ( 8 pts ) Consider the surface $z=\frac{x^{2}}{4}+\frac{y^{2}}{9}$ and the point $\left(\sqrt{3}, \frac{3}{2}, 1\right)$ on that surface. Using the axes and grid below,

- Draw the level curve to the surface going through that point.
- Sketch the gradient at that point. Briefly explain your reasoning.

(12 $\left.2^{\mathrm{pts}}\right)$ 2. Suppose that $z=x^{2}+2 x y-y^{2}$ where $x=2 u+v$ and $y=u-v$. Find $z_{u}$ in two ways: (a) (6 pts) using the multivariable chain rule.
(b) (6 pts) using direct substitution.
( $\left.10^{\text {pts }}\right)$ 3. Find the equation of the tangent plane to the surface

$$
3 x \cos y-2 x z^{2}+y^{2} z=1
$$

at the point $(1,0,1)$.
$\left(15^{\mathrm{pts}}\right)$ 4. Find and classify the critical points of $z=2 x y-x^{2} y-\frac{1}{8} y^{2}$.
$\left(12^{\mathrm{pts}}\right)$
5. Compute the iterated integral:

$$
I=\int_{0}^{e} \int_{\ln y}^{1} \sin \left(y e^{-x}\right) d x d y
$$

$\left(12^{\text {pts }}\right)$ 6. The total mass of a solid is given by:

$$
m=\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x
$$

(a) (6 pts) Describe and sketch the solid in space.

(b) ( 6 pts ) Switch the integral to spherical coordinates. You need not evaluate it but you may choose to do so for extra credit.
( $\left.12^{\text {pts }}\right)$ 7. Set up a triple integral to calculate the volume of the solid (illustrated below) bounded by the cylinder $x^{2}+y^{2}=1$, the plane $y=z$ and the $x y$-plane. You may use the coordinate system of your choice. Then evaluate the integral.

$\left(11^{\mathrm{pts}}\right)$ 8. Consider the following lamina with density $\rho=2 x$.

(a) (6 pts) Find the total mass $m$ of the lamina.
(b) (5 pts) If the first moment about the $x$-axis is $\frac{17}{12}$, and the first moment about the $y$-axis is $\frac{5}{2}$, where is the center of mass $(\bar{x}, \bar{y})$ of the lamina?

