Instructions. (100 points) You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit.
$\left(6^{\mathrm{pts}}\right)$ 1. Explain why $\lim _{(x, y) \rightarrow(1,0)} \frac{x y^{2}}{(x-1)^{2}+y^{2}}$ does not exist.
$\left(6^{\mathrm{pts}}\right)$
2. The plot below shows several level curves of a function $z=f(x, y)$. At the points A and B sketch vectors representing the correct directions for ∇f. Would ∇f be longer at A or at B ?

$\left(6^{\text {pts }}\right)$ 3. The pressure P (in kilopascals) of one mole of an ideal gas is determined by its temperature T (in kelvins) and volume V (in liters) according to

$$
P=8.3 \frac{T}{V}
$$

If $T=300$ kelvins, $d T / d t=0.2$ kelvins $/ \mathrm{sec}, V=10$ liters, $d V / d t=0.1$ liters $/ \mathrm{sec}$, at what rate will the pressure be changing?
$\left(12^{\text {pts }}\right)$ 4. Compute the iterated integral by switching the order of integration.

$$
I=\int_{0}^{1} \int_{-1}^{-\sqrt{y}} e^{x^{3}} d x d y
$$

$\left(8^{\text {pts }}\right)$ 5. Using the method of Lagrange multipliers, find the points on the circle $x^{2}+y^{2}=1$ where the maxima and minima of the function

$$
f(x, y)=x^{2}+y
$$

occur. For each of the points, indicate whether a maximum or a minimum occurs.
($\left.8^{\text {pts }}\right)$
6. Find an equation of the tangent plane to the surface

$$
y \cos (z+x)+z^{2}=5
$$

at the point $\left(x_{0}, y_{0}, z_{0}\right)=(2,0,-2)$.
$\left(10^{\mathrm{pts}}\right)$
7. Compute $\iint_{R} f(x, y) d A$ for $f(x, y)=\sqrt{9-x^{2}-y^{2}}$ and R the bounded region shaded below.

$\left(12^{\mathrm{pts}}\right)$
8. The mass of a solid Q is given by:

$$
m=\int_{0}^{2} \int_{0}^{2 \pi} \int_{\frac{\pi}{3}}^{\pi} \rho^{4} \cos ^{2} \phi \sin \phi d \phi d \theta d \rho
$$

(a) (4 pts) Describe and sketch the solid Q.

(b) (2 pts) Deduce from the equation above the density function:

$$
f(x, y, z)=
$$

(c) $(6 \mathrm{pts})$ Evaluate the mass m.
9. Consider the function

$$
f(x, y)=x^{2}+x y+y^{3}+2
$$

(a) $(4 \mathrm{pts})$ At the point $(2,-1)$, in which direction should you move to produce the greatest rate of decrease in f ?
(b) (6 pts) At the point $(2,-1)$, what is the directional derivative of f in the direction towards the origin?
(c) (4 pts) Show that $(0,0)$ and $(-1 / 12,1 / 6)$ are critical points of f. (They are the only critical points, but you need not show that.)
(d) (6 pts) Determine whether each of the critical points is a maximum, a minimum, or a saddle point.
($12^{\text {pts }}$) 10. Let (\bar{x}, \bar{y}) be the center of mass of a triangular planar lamina of density $\rho(x, y)=y$ determined by the vertices $(-1,0),(1,0)$, and $(0,2)$.
(a) (9 pts) Write an integral formula for \bar{x}. Fully set up the integral(s) with the integrand and limits of integration, but DO NOT EVALUATE.
(b) (3 pts) Can you find the value of \bar{x} without computation? Explain your answer.

