Instructions. (0 points) You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit.

1. Explain why $\lim _{(x, y) \rightarrow(1,0)} \frac{x y^{2}}{(x-1)^{2}+y^{2}}$ does not exist.

Solution: Setting $x=1$ and letting $y \rightarrow 0$ to approach $(1,0)$ along the line $(1, y)$, we see $\lim _{y \rightarrow 0} \frac{y^{2}}{y^{2}}=1$. Setting $y=0$ and letting $x \rightarrow 1$ to approach $(1,0)$ along the line $(x, 0)$, we see $\lim _{x \rightarrow 1} \frac{0}{(x-1)^{2}}=0$. Since these limits are different, the original multivariable limit does not exist.
2. The plot below shows several level curves of a function $z=f(x, y)$. At the points A and B sketch vectors representing the correct directions for ∇f. Would ∇f be longer at A or at B ?

Solution:

The gradient is orthogonal to the level curves towards increasing values of z. It will be longer at B because for the same positive change of z-value, the level curves are much more closely spaced at B than at A.
3. The pressure P (in kilopascals) of one mole of an ideal gas is determined by its temperature T (in kelvins) and volume V (in liters) according to

$$
P=8.3 \frac{T}{V}
$$

If $T=300$ kelvins, $d T / d t=0.2$ kelvins $/ \mathrm{sec}, V=10$ liters, $d V / d t=0.1$ liters $/ \mathrm{sec}$, at what rate will the pressure be changing?
Solution: By the chain rule,

$$
\begin{aligned}
\frac{d P}{d t} & =\frac{\partial P}{\partial T} \frac{d T}{d t}+\frac{\partial P}{\partial V} \frac{d V}{d t} \\
& =8.3 \frac{1}{V} \frac{d T}{d t}-8.3 \frac{T}{V^{2}} \frac{d V}{d t} \\
& =8.3 \frac{1}{10}(0.2)-8.3 \frac{300}{10^{2}}(0.1) \\
& =8.3(.02-.3)=8.3(-.28)=-2.324 \text { kilopascals } / \mathrm{sec} .
\end{aligned}
$$

4. Compute the iterated integral by switching the order of integration.

$$
I=\int_{0}^{1} \int_{-1}^{-\sqrt{y}} e^{x^{3}} d x d y
$$

Solution: Sketching the region of integration, we have:

So switching the order,

$$
\begin{aligned}
I & =\int_{-1}^{0} \int_{0}^{x^{2}} e^{x^{3}} d y d x=\int_{-1}^{0}\left[y e^{x^{3}}\right]_{0}^{x^{2}} d x=\int_{-1}^{0} x^{2} e^{x^{3}} d x \\
& =\left[\frac{1}{3} e^{x^{3}}\right]_{-1}^{0}=\frac{1}{3}\left(1-\frac{1}{e}\right)=\frac{e-1}{3 e}
\end{aligned}
$$

5. Using the method of Lagrange multipliers, find the points on the circle $x^{2}+y^{2}=1$ where the maxima and minima of the function

$$
f(x, y)=x^{2}+y
$$

occur. For each of the points, indicate whether a maximum or a minimum occurs.
Solution: With $g(x, y)=x^{2}+y^{2}$, we set $\nabla f=\lambda \nabla g$ to find $\langle 2 x, 1\rangle=\lambda\langle 2 x, 2 y\rangle$. From $2 x=\lambda 2 x$ we have $2 x(1-\lambda)=0$ so $x=0$ or $\lambda=1$.
If $x=0$, from $x^{2}+y^{2}=1$ we see $y= \pm 1$.
If $\lambda=1$, from $1=\lambda 2 y$ we see $y=1 / 2$, and then $x^{2}+y^{2}=1$ shows $x= \pm \sqrt{3} / 2$.
Evaluating f at the four points $(0, \pm 1),(\pm \sqrt{3} / 2,1 / 2)$ shows

- a maximum occurs at the two points $(\pm \sqrt{3} / 2,1 / 2)$;
- and a minimum at $(0,-1)$;
- at $(0,1)$, there is neither a maximum or minimum.

6. Find an equation of the tangent plane to the surface

$$
y \cos (z+x)+z^{2}=5
$$

at the point $\left(x_{0}, y_{0}, z_{0}\right)=(2,0,-2)$.
Solution: For $f(x, y, z)=y \cos (z+x)+z^{2}$, we find

$$
\nabla f=\langle-y \sin (z+x), \cos (z+x),-y \sin (z+x)+2 z\rangle
$$

so $\nabla f(2,0,-2)=\langle 0,1,-4\rangle$. The tangent plane is thus given by

$$
0(x-2)+1(y-0)-4(z+2)=0
$$

or

$$
y-4 z=8
$$

7. Compute $\iint_{R} f(x, y) d A$ for $f(x, y)=\sqrt{9-x^{2}-y^{2}}$ and R the bounded region shaded below.

Solution: Let's use polar coordinates: $f(r \cos \theta, r \sin \theta)=\sqrt{9-r^{2}}$ and R will have constant bounds in (r, θ). The inner circle has $(1,1)$ on it so $1^{2}+1^{2}=2$ so that's $r=\sqrt{2}$ whereas the outer circle has radius 3. The boundary line $y=x$ corresponds to $\theta=\frac{\pi}{4}$ and the negative x-axis to $\theta=\pi$. Hence

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{\sqrt{2}}^{3} \int_{\frac{\pi}{4}}^{\pi} \sqrt{9-r^{2}} r d \theta d r=\int_{\sqrt{2}}^{3}\left[\theta r \sqrt{9-r^{2}}\right]_{\frac{\pi}{4}}^{\pi} d r=\frac{3 \pi}{4} \int_{\sqrt{2}}^{3} r \sqrt{9-r^{2}} d r \\
& =\frac{3 \pi}{4}\left[\left(-\frac{1}{2}\right) \frac{2}{3}\left(9-r^{2}\right)^{\frac{3}{2}}\right]_{\sqrt{2}}^{3}=\frac{\pi}{4}(0+7 \sqrt{7})=\frac{7 \pi \sqrt{7}}{4} .
\end{aligned}
$$

8. The mass of a solid Q is given by:

$$
m=\int_{0}^{2} \int_{0}^{2 \pi} \int_{\frac{\pi}{3}}^{\pi} \rho^{4} \cos ^{2} \phi \sin \phi d \phi d \theta d \rho
$$

(a) Describe and sketch the solid Q.

This is a sphere of radius 2 with the inside of the half cone $0 \leq \phi \leq \frac{\pi}{3}$ taken out.
(b) Deduce from the equation above the density function:

Solution: $f(x, y, z)=z^{2}$
(c) Evaluate the mass m.

Solution:

$$
\begin{aligned}
m & =\int_{0}^{2} \int_{0}^{2 \pi} \int_{\frac{\pi}{3}}^{\pi} \rho^{4} \cos ^{2} \phi \sin \phi d \phi d \theta d \rho=\int_{0}^{2} \rho^{4} \int_{0}^{2 \pi}\left[-\frac{1}{3} \cos ^{3} \phi\right]_{\frac{\pi}{3}}^{\pi} d \theta d \rho \\
& =\int_{0}^{2} \rho^{4} \int_{0}^{2 \pi}-\frac{1}{3}\left((-1)^{3}-\left(\frac{1}{2}\right)^{3}\right) d \theta d \rho=\frac{3}{8} \int_{0}^{2} \rho^{4} \int_{0}^{2 \pi} d \theta d \rho \\
& =\frac{3 \pi}{4} \int_{0}^{2} \rho^{4} d \rho=\frac{3 \pi}{20}\left(2^{5}-0\right)=\frac{24 \pi}{5} .
\end{aligned}
$$

9. Consider the function

$$
f(x, y)=x^{2}+x y+y^{3}+2
$$

(a) At the point $(2,-1)$, in which direction should you move to produce the greatest rate of decrease in f ?
Solution:
$\left.\nabla f\right|_{(2,-1)}=\left.\left\langle 2 x+y, x+3 y^{2}\right\rangle\right|_{(2,-1)}=\langle 3,5\rangle$, so the direction of greatest decrease is

$$
-\left.\nabla f\right|_{(2,-1)}=\langle-3,-5\rangle
$$

(b) At the point $(2,-1)$, what is the directional derivative of f in the direction towards the origin? Solution:
The direction we consider is $\mathbf{u}=\frac{1}{\|\mathbf{v}\|} \mathbf{v}$ with $\mathbf{v}=(0,0)-(2,-1)=(-2,1)$, so $\mathbf{u}=\langle-2 / \sqrt{5}, 1 / \sqrt{5}\rangle$.
Then

$$
D_{\mathbf{u}} f(2,-1)=\left.\nabla f\right|_{(2,-1)} \cdot \mathbf{u}=\langle 3,5\rangle \cdot\langle-2 / \sqrt{5}, 1 / \sqrt{5}\rangle=-1 / \sqrt{5}
$$

(c) Show that $(0,0)$ and $(-1 / 12,1 / 6)$ are critical points of f. (They are the only critical points, but you need not show that.)
Solution:
Since $\nabla f=\left\langle 2 x+y, x+3 y^{2}\right\rangle$, we see $\left.\nabla f\right|_{(0,0)}=\langle 0,0\rangle$ and $\left.\nabla f\right|_{(-1 / 12,1 / 6)}=\langle 0,0\rangle$.
(d) Determine whether each of the critical points is a maximum, a minimum, or a saddle point.

Solution:

Applying the Second Partials Test, we consider the matrix of second partial derivatives,

$$
\left(\begin{array}{ll}
f_{x x} & f_{y x} \\
f_{x y} & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
2 & 1 \\
1 & 6 y
\end{array}\right)
$$

At $(0,0)$, the determinant is $-1<0$, so that point is a saddle.
At $(-1 / 12,1 / 6)$, the determinant is $1>0$, and the upper left entry is $2>0$, so that point is a minimum.
10. Let (\bar{x}, \bar{y}) be the center of mass of a triangular planar lamina of density $\rho(x, y)=y$ determined by the vertices $(-1,0),(1,0)$, and $(0,2)$.
(a) Write an integral formula for \bar{x}. Fully set up the integral(s) with the integrand and limits of integration, but DO NOT EVALUATE.
Solution: The region of integration is:

$$
y=2+2 x \text { or } x=-1+\frac{y}{2}
$$

So we have:

$$
\begin{aligned}
\bar{x} & =\frac{\iint_{R} x \rho(x, y) d A}{A}=\frac{\iint_{R} x \rho(x, y) d A}{\iint_{R} \rho(x, y) d A} \\
& =\frac{\int_{0}^{2} \int_{-1+\frac{y}{2}}^{1-\frac{y}{2}} x y d x d y}{\int_{0}^{2} \int_{-1+\frac{y}{2}}^{1-\frac{y}{2}} y d x d y} \text { or } \frac{\int_{-1}^{0} \int_{0}^{2+2 x} x y d y d x+\int_{0}^{1} \int_{0}^{2-2 x} x y d y d x}{\int_{-1}^{0} \int_{0}^{2+2 x} y d y d x+\int_{0}^{1} \int_{0}^{2-2 x} y d y d x} .
\end{aligned}
$$

(b) Can you find the value of \bar{x} without computation? Explain your answer.

Solution: Yes. We have that $\bar{x}=0$ by symmetry of the region and because $\rho(x, y)$ is independent of x.

