\qquad

Instructions: 100 points total. Use only your brain and writing implement. You have 90 minutes to complete this exam. Good luck.

1. (24 pts. -6 pts. each) A particle at point $P(15,-2,3)$ in \mathbb{R}^{3} is constrained so that it can only move along the line segment joining the point P to the point $Q(25,-2,3)$.
(a) Find the displacement vector $\overrightarrow{P Q}$ along which the particle may move, and the length $|\overrightarrow{P Q}|$ in meters of $\overrightarrow{P Q}$.
\qquad
\qquad .
(b) A constant force vector $\mathbf{F}=2 \sqrt{3} \mathbf{i}+\mathbf{j}+\sqrt{3} \mathbf{k}$ Newtons acts on this particle and moves it from the point P to Q. Find the work done. Include units in your final answer.
(c) Find the angle θ between the force vector \mathbf{F} and $\overrightarrow{P Q}$.

Answer: $\theta=$ \qquad .
(d) Suppose you wish to maximize the work done in moving the particle from P to Q. Find a force vector \mathbf{G} that has the same magnitude as \mathbf{F}, but would maximize the workwork done. Briefly justify your answer.

Answer: $\mathbf{G}=$ \qquad .
2. (14 pts.) Compute the definite integral

$$
\int_{0}^{2}\left\langle 4 t e^{2 t}, 0, \frac{1}{1+4 t^{2}}\right\rangle d t .
$$

Answer: \qquad .
3. (12 pts.)
(a) (9 pts.) Find the equation of the plane containing the points

$$
P(-1,2,1), \quad Q(-1,5,2), \quad R(-2,1,4)
$$

Answer: \qquad .
(b) (3 pts.) Is the origin on this plane? Why, or why not?
4. ($24 \mathrm{pts} .-6 \mathrm{pts}$. each) The formulas for curvature $\kappa(t)$ for a space curve are:

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}} \quad \kappa=\frac{d \mathbf{T}}{d \mathbf{s}}
$$

Consider the space curve given parametrically by

$$
\mathbf{r}(t)=\left\langle 4 t, t^{2}, \frac{1}{6} t^{3}\right\rangle \text { for } t \in \mathbb{R} .
$$

(a) Find the length of the curve $\mathbf{r}(t)$ for $0 \leq t \leq 1$.

Answer: \qquad .
(b) Find the curvature of $\mathbf{r}(t)$ at the time $t=1$.
\qquad .
(continued ...)

$$
\mathbf{r}(t)=\left\langle 4 t, t^{2}, \frac{1}{6} t^{3}\right\rangle \text { for } t \in \mathbb{R}
$$

(c) Suppose that a particle's trajectory is given by $\mathbf{r}(t)$ at time t. Give a unit vector \mathbf{u} that points in the direction of travel at time $t=2$.

Answer: The unit vector is $\mathbf{u}=$ \qquad .
(d) Give the parametric equations of the tangent line to $\mathbf{r}(t)$ at the point $\mathbf{r}(2)$.

Answer: \qquad .
5. (9 pts. -3 pts. each) On the axes below, sketch the x-traces for the values of $k=-9,0,1$ for the 'saddle' given by the equation $x=9 y^{2}-z^{2}$. Label the traces with their equations and indicate intercepts as appropriate.

$$
k=-9,0,1
$$

6. (17 pts.) A projectile is fired from a height of 48 ft with an initial speed of $64 \mathrm{ft} / \mathrm{s}$, and an angle $\theta=\frac{\pi}{6}$ of elevation. See figure.

(a) (3 pts.) It is not difficult to show that the velecity of the projectile at time t is given by the vector equation:

$$
\mathbf{v}(t)=\left\langle v_{x},-32 t+v_{y}\right\rangle \mathrm{ft} / \mathrm{s}
$$

where $\mathbf{v}_{0}=\left\langle v_{x}, v_{y}\right\rangle$ is the initial velocity of the projectile. Find \mathbf{v}_{0}.

Answer: $\mathbf{v}_{\mathbf{0}}=$ \qquad
(b) (6 pts .) Find the position $\mathbf{r}(t)$ of the projectile at any time t. Include units in your answer.

Answer: $\mathbf{r}(t)=$ \qquad
(c) (6 pts.) Find the time that the projectile hits the ground, and the horizontal distance it traveled.

Answer:
(d) (2 pts.) On the drawing above, sketch an acceleration vector $\vec{a}(t)$ at some time t (you choose) before the projectile hits the ground.

