Instructions. (100 points) You have 60 minutes. No notes, book, or calculators allowed. Show all your work in order to receive full credit.

1. Consider a triangle in space with vertices $A(1,0,-1), B(2,2,-2)$, and $C(-2,1,0)$.
(a) $(3 \mathrm{pts})$ Find the equation of the sphere centered at A and going through B.
(b) (5 pts) Find the cosine of the angle at vertex A in the triangle.
(c) $(8 \mathrm{pts})$ Find the equation of the plane containing the triangle $A B C$.
$\left(16^{\text {pts }}\right)$
2. Let $\mathbf{r}(t)=\langle 3 \cos t, 5 \sin t,-4 \cos t\rangle$ describe the trajectory of a particle over time, where position is measured in meters and time in seconds.
(a) (6 pts) Find the distance traveled (i.e. the arc length) from $t=0 \mathrm{~s}$ to $t=2 \pi \mathrm{~s}$.
(b) (4 pts) Show that the trajectory $\mathbf{r}(t)=\langle 3 \cos t, 5 \sin t,-4 \cos t\rangle$ sits on both surfaces $4 x+3 z=0$ and $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$ at all times.
(c) $(6 \mathrm{pts})$ Sketch the surface $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$. Include a scale.

($\left.8^{\text {pts }}\right)$ 3. Consider vectors \mathbf{a} and \mathbf{b} as shown below.
(a) (4pts) Sketch the following:
$\mathbf{a}-\mathbf{b}$
$\operatorname{proj}_{\mathbf{b}} \mathbf{a}$

(b) (4 pts) State whether the following statements are true or false. Briefly justify.

- $\mathbf{a} \cdot \mathbf{b} \geq 0$
- $\mathbf{a} \times \mathbf{b}$ points out of the page towards you.
$\left(14^{\mathrm{pts}}\right) \quad$ 4. Let a space curve be described by $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+3 t \mathbf{k}$.
(a) (8 pts) Find the symmetric equations of the tangent line to the curve at the point $P(-1,1,-3)$.
(b) (6 pts) Find the tangential component of the acceleration for any t.

5. Consider the line given by:

$$
x=2+t \quad, \quad y=1-t \quad, \quad z=5-4 t
$$

(a) (5 pts) Show that the line is parallel to but not in the plane $x-3 y+z=1$.
(b) (5 pts) Find the distance from the line to the plane. Hint: You can use any point from the line.
$\left(12^{\text {pts }}\right)$ 6. Identify the surface from its equation then sketch the surface.
(a) $(6 \mathrm{pts}) z=1+x^{2}+\frac{y^{2}}{4}$

Type of surface: \qquad
(b) $(6 \mathrm{pts}) x^{2}+z^{2}-4 y^{2}=4$

Type of surface: \qquad

$\left(12^{\text {pts }}\right)$ 7. A particle is moving in space from an initial position $\mathbf{r}(0)=\langle 0,0,1\rangle$ and initial velocity $\mathbf{v}(0)=\langle 2,1,2\rangle$ according to the following acceleration (measured in ft / s) at time t :

$$
\mathbf{a}(t)=\left\langle 4 e^{2 t}, 6 t, \frac{1}{(t+1)^{2}}\right\rangle \quad, \quad t \geq 0
$$

Find the position of the particle at $t=1 \mathrm{~s}$.
8. Let $f(t)=\frac{1}{t}$ and let $\mathbf{r}(t)=\left\langle t^{2}-1, \tan t\right\rangle$. Compute the derivative $\frac{d}{d t}[f(t) \mathbf{r}(t)]$ by using the rules of differentiation for a product. No credit will be given for substituting first.
$\left(6^{\text {pts }}\right)$
9. Physical applications. Choose one of the following problems to solve. You may do the other for extra credit only.
(a) Find the work done by gravity if a child on a sled with combined weight 60 lbs goes down 50 feet along a 30° incline.
(b) Find the magnitude of the torque when applying a force of 10 N directly upwards on a 20 -cm wrench that makes a 45° angle with the horizontal.

