
MATH202X-F01/UX1

Spring 2015
Practice Final Exam Name: Answer Key

Instructions. (0 points) You have 120 minutes. Each problem is worth 10 points. No calculators allowed.
Show all your work in order to receive full credit.

1. Consider the following three points: A(−1, 0, 1), B(1, 1, 2), and C(1, 2, 0).

(a) Determine whether the three points are collinear.

Solution:
#    »

AB = 〈2, 1, 1〉 ;
#    »

AC = 〈2, 2,−1〉. The vectors are not scalar multiples of each other

i.e.
#    »

AB 6= k
#    »

AC for any real number k, so A,B,C are not collinear.

(b) If they are collinear, give the parametric equations of the line they form. If not, give the equation
of the plane containing these three points.

Solution:

#    »

AB × #    »

AC =

∣∣∣∣∣∣
~ı ~ ~k
2 1 1
2 2 −1

∣∣∣∣∣∣
= (−1− 2)~ı− (−2− 2)~+ (4− 2)~k

= 〈−3, 4, 2〉

The vector 〈−3, 4, 2〉 is normal to the plane so the equation of the plane is given by (using the point
A):

− 3(x+ 1) + 4(y − 0) + 2(z − 1) = 0

− 3x− 3 + 4y + 2z − 2 = 0

3x− 4y − 2z + 5 = 0.

2. Consider the plane:
x+ 2y + 3z + 4 = 0

and the following symmetric equations for two distinct lines:

Line 1:
x+ 1

2
= y =

z + 1

−1
,

Line 2: x− 1 = y − 2 =
z

−1
.

Classify the intersection of the plane with each of the lines. Is there a one-point intersection (if so, give
the coordinates of the point), no intersection because the line is parallel to the plane, or is the line in
the plane?

Solution: The normal vector to the plane is ~n = 〈1, 2, 3〉.
• Line 1: the direction vector is ~v1 = 〈2, 1,−1〉 and since

〈1, 2, 3〉 · 〈2, 1,−1〉 = 2 + 2− 3 = 1 6= 0,

then Line 1 intersects the plane at one point. From the line we have x = 2y − 1 and z = −1 − y
so substituting into the plane equation:

(2y − 1) + 2y + 3(−y − 1) = 0 ⇒ y = 0

and so we have x = −1 and z = −1; hence (−1, 0,−1) is the point of interesection between Line

1 and the plane.
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• Line 2: the direction vector is ~v2 = 〈1, 1,−1〉 and since

〈1, 2, 3〉 · 〈1, 1,−1〉 = 1 + 2− 3 = 0,

then Line 2 is either parallel to the plane (no intersection) or in the plane (infinitely many solutions).
So we test a point from the line. For example from reading the equations, we can see that (1, 2, 0)
is a point on the plane and

1 + 2(2) + 3(0) + 4 = 9 6= 0

so Line 2 is parallel to the plane but not in it.

3. Consider the following vector-valued function, representing the trajectory of a particle:

~r(t) =
√

1 + cos 2t~ı+ 3 sin t~+ 2 cos t~k.

x
y

z

(a) Find all the open interval(s) on which ~r(t) is smooth.

Solution: We have:
#»

r′(t) =

〈
− sin 2t√
1 + cos 2t

, 3 cos t,−2 sin t

〉
.

Note that
#»

r′(t) is continuous and nonzero wherever it is defined but since it’s undefined for t =
(2k + 1π2 ) for any integer k, then

#»r (t) is smooth on
⋃
k∈Z

(
(2k − 1)π

2
,

(2k + 1)π

2

)
.

(b) Find the speed of the particle at t = 0.

Solution: We have
#»

r′(0) = 〈0, 3, 0〉 so its speed is
∥∥∥ #»

r′(0)
∥∥∥ = 3.

Now, for extra credit: the parametric curve lies entirely on which of the following surface(s)? Check
all that apply. You need not justify your answers.

the ellipsoid: x2 +
y2

9
+
z2

4
= 1,

4 the hyperboloid of one sheet: x2 +
y2

9
− z2

4
= 1,

4 the elliptic cylinder:
y2

9
+
z2

4
= 1,

the hyperbolic paraboloid: x =
y2

9
− z2

4
.
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4. A particle in space moves with acceleration:

#»a (t) =

〈
1,

1

2
√
t
, 0

〉
, t ≥ 1

such that its velocity at t = 1 is #»v (1) =

〈
3

2
, 1,

√
3

2

〉
and its position is #»r (1) =

〈
1,

2

3
,
√

3

〉
.

(a) Find the position of the particle at t = 4.

Solution:

#»
t =

〈
t,
√
t, 0
〉

+
# »

C1〈
3

2
, 1,

√
3

2

〉
= #»v (1) = 〈1, 1, 0〉+

# »

C1 ⇒ # »

C1 =

〈
1

2
, 0,

√
3

2

〉

⇒ #»
t =

〈
t+

1

2
,
√
t,

√
3

2

〉

#»r (t) =

〈
t2

2
+
t

2
,

2

3
t
3
2 ,
t
√

3

2

〉
+

# »

C2〈
1,

2

3
,
√

3

〉
= #»r (1) =

〈
1,

2

3
,

√
3

2

〉
+

# »

C2 ⇒ # »

C2 =

〈
0, 0,

√
3

2

〉

⇒ #»r (t) =

〈
t2 + t

2
,

2

3
t
3
2 ,

√
3

2
(t+ 1)

〉
⇒ #»r (4) =

〈
10,

16

3
,

5
√

3

2

〉
.

(b) Find the length of the curve between t = 1 and t = 4.

Solution:

s =

ˆ 4

1

∥∥∥ #»

r′(t)
∥∥∥ dt =

ˆ 4

1

√(
t+

1

2

)2

+ t+
3

4
dt

=

ˆ 4

1

√
t2 + t+

1

4
+ t+

3

4
dt

=

ˆ 4

1

√
t2 + 2t+ 1 dt

=

ˆ 4

1

√
(1 + t)2 dt

=

ˆ 4

1

t+ 1 dt

=
t2

2
+ t

∣∣∣∣4
1

= 8 + 4− 1

2
− 1 = 11− 1

2
=

21

2
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5. Consider a point P (1, 0) in the domain of the surface

z = x cos y − yx2 + 2(y + 1).

Assume the surface represents a hilly area, modeled below:

x

y

z

(1, 0, 3)

(a) What is the rate of change of altitude at the point P when moving in the direction of the vector
#»v = 〈3, 4〉?
Solution: Let #»u be the unit vector in the direction of #»v :

#»u =
#»v

‖ #»v ‖
=
〈3, 4〉√
9 + 16

=

〈
3

5
,

4

5

〉
.

Then the rate of change is:

D #»u z|(1,0) = ∇z · #»u |(1,0)

=
〈
cos y − 2xy,−x sin y − x2 + 2

〉
·
〈

3

5
,

4

5

〉∣∣∣∣
(1,0)

= 〈1, 1〉 ·
〈

3

5
,

4

5

〉
=

7

5
.

(b) What is the direction of maximum decrease at P? I.e. if chased by a bear, which direction should
P take to get down that hill the fastest? What is the rate of decrease in that direction?

Solution:

• direction: −∇z(1, 0) = 〈−1,−1〉 ,

• rate of change: −‖∇z(1, 0)‖ = −
√

2 .
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6. Classify any critical points and then use Lagrange multipliers on the boundary and find the absolute
maximum and minimum values of the function

f(x, y) = 2x2 + 3y2 − 4x− 5

on the domain x2 + y2 ≤ 16, y ≥ 0.

Solution: The region is the upper part of the disk of radius 4:

x

y

R

0 2 4

2

4

We’ll use the constraint g(x, y) = x2 + y2 and then h(x, y) = y. First to find critical points, we solve:

• ∇f =
#»
0 : since ∇f = 〈4x− 4, 6y〉, we have:{

4x− 4 = 0

6y = 0
⇒ x = 1 , y = 0.

The point (1, 0) is in our region (barely because it’s on the boundary) and since fxx = 4 > 0,

fyy = 6, fxy = 0, and d = 4(6)− 02 > 0 then f has a relative minimum at (1, 0,−7).

• on the boundary g(x, y) = 16 (with y ≥ 0): since ∇g = 〈2x, 2y〉, we have:

∇f = λ∇g ⇒

{
4x− 4 = 2λx

6y = 2λy
⇒ either y = 0 or λ = 3

– if y = 0 then x2 + 0 = 16 so x = pm4;

– if λ = 3 then 4x − 4 = 6x so x = −2 and (−2)2 + y2 = 16 so y2 = 12 and y = 2
√

3 (only
solution satisfying y ≥ 0).

• on the boundary h(x, y) = 0 (with −4 ≤ x ≤ 4): since ∇h = 〈0, 1〉, we have:

∇f = λ∇h ⇒

{
4x− 4 = 0

6y = λ
⇒ x = 1 and y = 0

which was found already through the search for critical points.

So putting all points of interest in a table:

x y z

1 0 −7 relative minimum and absolute minimum
−4 0 43
4 0 11

−2 2
√

3 47 absolute maximum
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7. Find the moment of inertia about the y−axis Iy for a planar lamina R corresponding to the region
below.

x

y

R

0 1 2

1

2

where the density ρ(x, y) = y.

Solution:

Iy =

¨
R

x2y dA =

ˆ π
2

0

ˆ 2

1

r2 cos2 θ r sin θ r dr dθ

=

ˆ π
2

0

ˆ 2

1

r4 cos2 θ sin θ dr dθ

=

ˆ π
2

0

r5

5

∣∣∣∣2
1

cos2 θ sin θ dθ

=
31

5

ˆ π
2

0

cos2 θ sin θ dθ =
31

5

[
−1

3
cos3 θ

]π
2

0

=
31

15

8. Consider the vector field
−→
F (x, y, z) =

〈
x2y, xy2, 2xyz

〉
acting on a closed surface S consisting of the

boundary of a triangular prism with the following vertices:

x

y

z

(2, 0, 0)

(0, 1, 0)

(0, 1, 2)

(2, 0, 2)
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We are interested in evaluating the flux of the vector field over the surface S. Since the component

functions of
−→
F have continuous first partial derivatives over the solid prism Q , apply the Divergence

Theorem ‹
S

−→
F ·
−→
N dS︸ ︷︷ ︸

flux

=

˚
Q

div
−→
F dV

to evaluate the flux indirectly.

Solution: If we use the order dz dx dy for Q we need its projection onto the xy-plane:

x

y

x+ 2y = 2

0 1 2

1

Now since the divergence of
−→
F is:

div
−→
F = 2xy + 2xy + 2xy = 6xy

then the flux is:

˚
Q

div
−→
F dV =

ˆ 1

0

ˆ 2−2y

0

ˆ 2

0

6xy dz dx dy =

ˆ 1

0

ˆ 2−2y

0

12xy dx dy =

ˆ 1

0

6x2y
∣∣2−2y

0
dy

=

ˆ 1

0

24y(1− y)2 dy =

∣∣∣∣ u = 8y du = 8 dy
dv = 3(1− y)2 dy v = −(1− y)3

∣∣∣∣
=
���

���
��:0[

−8y(1− y)3
]1
0

+

ˆ 1

0

8(1− y)3 dy = −2(1− y)4
∣∣1
0

= 2 .

For extra credit, evaluate directly the flux. Note that you need to consider 5 surfaces separately including
one which can be given by the following parametric representation: ~r(u, v) = 〈2− 2u, u, v〉 for 0 ≤ u ≤
1, 0 ≤ v ≤ 2.

Solution: First let us label the five faces and their respective normal vectors:

x

y

z

(2, 0, 0)

(0, 1, 0)

(0, 1, 2)

(2, 0, 2)

S1
N1

S2 N2

S3
N3

S4

N4

S5

N5

Then note the few shortcuts along the way...

• on S1, y = 0 so
−→
F =< x2(0), x(0)2, 2x(0)z >=

#»
0 along S1 and therefore,

¨
S1

−→
F ·
−→
N dS = 0;
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• on S2, x = 0 so
−→
F =< (0)2y, (0)y2, 2(0)yz >=

#»
0 along S2 and therefore,

¨
S2

−→
F ·
−→
N dS = 0;

• on S3, we can use the given parametrization ~r(u, v) = 〈2− 2u, u, v〉 for 0 ≤ u ≤ 1, 0 ≤ v ≤ 2. So

#»ru × #»rv =

∣∣∣∣∣∣
~ı ~ ~k
−2 1 0
0 0 1

∣∣∣∣∣∣ = 〈1, 2, 0〉

and since it is pointing outwards already, then we choose
−→
N dS = 〈1, 2, 0〉 dv du and so:

¨
S3

−→
F ·
−→
N dS =

ˆ 1

0

ˆ 2

0

〈
(2− 2u)2u, (2− 2u)u2, 2(2− 2u)uv

〉
· 〈1, 2, 0〉 dv du

=

ˆ 1

0

ˆ 2

0

u(2− 2u)2 + 2u2(2− 2u) + 0 dv du =

ˆ 1

0

u(2− 2u) (2− 2u+ 2u) [v]
2
0 du

=

ˆ 1

0

8u(1− u) du =

[
4u2 − 8u3

3

]1

0

= 4− 8

3
=

4

3
;

• on S4, we have that
#  »

N4 = 〈0, 0,−1〉 so only the P component of
−→
F will survive; but z = 0 on S4

so P = 2xy(0) = 0 and therefore,

¨
S4

−→
F ·
−→
N dS = 0;

• on S5, we have that
#  »

N5 = 〈0, 0, 1〉 so only the P component wil survive again; this time z = 2 and
P = 2xy(2) 6= 0 everywhere so we need a representation of S4; the easiest is to use the description
of the face from the indirect computation done earlier (except now z = 2), i.e.

S5 = {(x, y, 2) : 0 ≤ y ≤ 1 , 0 ≤ x ≤ 2− 2y}

and therefore,

¨
S5

−→
F ·
−→
N dS =

ˆ 1

0

ˆ 2−2y

0

〈
x2y, xy2, 4xy

〉
· 〈0, 0, 1〉 dx dy =

ˆ 1

0

ˆ 2−2y

0

4xy dx dy

=

ˆ 1

0

[
2x2y

]2−2y

0
dy =

ˆ 1

0

2(2− y)2y dy

=

ˆ 1

0

8y(1− y)2 dy =

∣∣∣∣∣ u = 8y du = 8 dy

dv = (1− y)2 dy v = − (1−y)3

3

∣∣∣∣∣
=
��

���
���:

0[
−8y

(1− y)3

3

]1

0

+

ˆ 1

0

8

3
(1− y)3 dy = −2

3
(1− y)4

∣∣∣∣1
0

=
2

3
.

So putting them all together, we have:

‹
S

−→
F ·
−→
N dS = 0 + 0 +

4

3
+ 0 +

2

3
= 2 . X

Note that even though we get the same result, using the divergence theorem was much easier...

9. Consider a particle moving through space along the curve C given by the following parametric repre-
sentation:

~r(t) =

〈
t3 − 3t+ 1,

t

2
+ 1,

t

2
cosπt

〉
, 0 ≤ t ≤ 2

and subject to the vector field:
−→
F (x, y, z) =

〈
y3 − 2xz, 3xy2 + 2z, 2y − x2

〉
.
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(a) Show that
−→
F is conservative.

Solution:

curl
−→
F =

∣∣∣∣∣∣
~ı ~ ~k
∂x ∂y ∂z

y3 − 2xz 3x2y + 2z 2y − x2

∣∣∣∣∣∣ = (2− 2)~ı− (−2x+ 2x)~+ (3y2 − 3y2)~k =
#»
0

so
−→
F is conservative.

(b) Find all potential functions for the field
−→
F .

Solution:

f(x, y, z) =

ˆ
y3 − 2xz dx = xy3 − x2z + C1(y, z)

f(x, y, z) =

ˆ
3xy2 + 2z dy = xy3 + 2yz + C2(x, z)

f(x, y, z) =

ˆ
2y − x2 dz = 2yz − x2z + C3(x, y)

⇒ f(x, y, z) = xy3 − x2z + 2yz + C

(c) Use the Fundamental Theorem of Line Integrals to compute the work done on the particle.

Solution: Since ~r(0) = 〈1, 1, 0〉 and ~r(2) = 〈8− 6 + 1, 2, 1〉 = 〈3, 2, 1〉 then

W =

ˆ
C

−→
F · d~r = f(3, 2, 1)− f(1, 1, 0) = 3(8)− 9(1) + 2(2)(1)− 1 + 0− 0 = 18 .

For extra credit, using the same initial and final points, find a simpler path between them and use
it to compute the work again – directly this time.

Solution: We can use paths parallel to the axes and use the differential form:

• C1: (1, 1, 0)→ (3, 1, 0) then

ˆ
C1

−→
F · d~r =

ˆ
C1

M(x, 1, 0) dx+���
���

�:0
N(x, 1, 0) dy +���

���:
0

P (x, 1, 0) dz =

ˆ 3

1

1− 2x(0) dx =

ˆ 3

1

dx = 2;

• C2: (3, 1, 0)→ (3, 2, 0) then

ˆ
C2

−→
F · d~r =

ˆ
C2
���

���
�:0

M(3, y, 0) dx+N(3, y, 0) dy +���
���:

0
P (3, y, 0) dz

=

ˆ 2

1

3(3)y2 + 2(0) dy =

ˆ 2

1

9y2 dx =
[
3y3
]2
1

= 24− 3 = 21;

• C3: (3, 2, 0)→ (3, 2, 1) then

ˆ
C3

−→
F · d~r =

ˆ
C3
��

���
��:0

M(3, 2, z) dx+��
���

��:0
N(3, 2, z) dy + P (3, 2, z) dz

=

ˆ 1

0

2(2)− (3)2 dx =

ˆ 1

0

−5 dx = −5.

So putting it all together,

W =

ˆ
C

−→
F · d~r = 2 + 21− 5 = 18 . X



MATH202X-F01/UX1/PFE – Page 10 of 10 –

10. Use Green’s Theorem to evaluateffi
C

(
sin(x2) + 3y

)
dx+ (ln y + 4x) dy

where C is the closed curve composed of the graph of y = x2

4 + 1 for 0 ≤ x ≤ 2 followed by the line
segment going from (2, 2) to (0, 1) as illustrated below:

x

y

2

20

1 C

Solution: The piecewise smooth closed simple curve C is oriented positively and the line segment has

equation y = x
2 + 1. Setting M = sin

(
x2
)

+ 3y and N = ln y + 4x, we have My = 3 and Nx = 4 and
therefore by Green’s theorem:

ffi
C

M dx+N dy =

¨
R

(Nx −My) dA =

ˆ 2

0

ˆ x
2 +1

x2

4 +1

(4− 3) dy dx

=

ˆ 2

0

x

2
− x2

4
dx =

x2

4
− x3

12

∣∣∣∣2
0

= 1− 8

12
=

4

12
=

1

3
.


