Instructions. (0 points) You have 120 minutes. Each problem is worth 10 points. No calculators allowed. Show all your work in order to receive full credit.

1. Consider the following three points: $A(-1,0,1), B(1,1,2)$, and $C(1,2,0)$.
(a) Determine whether the three points are collinear.

Solution: $\overrightarrow{A B}=\langle 2,1,1\rangle \quad ; \quad \overrightarrow{A C}=\langle 2,2,-1\rangle$. The vectors are not scalar multiples of each other i.e. $\overrightarrow{A B} \neq k \overrightarrow{A C}$ for any real number k, so A, B, C are not collinear.
(b) If they are collinear, give the parametric equations of the line they form. If not, give the equation of the plane containing these three points.
Solution:

$$
\begin{aligned}
\overrightarrow{A B} \times \overrightarrow{A C} & =\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 & 1 & 1 \\
2 & 2 & -1
\end{array}\right| \\
& =(-1-2) \vec{\imath}-(-2-2) \vec{\jmath}+(4-2) \vec{k} \\
& =\langle-3,4,2\rangle
\end{aligned}
$$

The vector $\langle-3,4,2\rangle$ is normal to the plane so the equation of the plane is given by (using the point A):

$$
\begin{aligned}
& -3(x+1)+4(y-0)+2(z-1)=0 \\
& -3 x-3+4 y+2 z-2=0 \\
& 3 x-4 y-2 z+5=0 .
\end{aligned}
$$

2. Consider the plane:

$$
x+2 y+3 z+4=0
$$

and the following symmetric equations for two distinct lines:
Line 1: $\quad \frac{x+1}{2}=y=\frac{z+1}{-1}$,
Line 2: $\quad x-1=y-2=\frac{z}{-1}$.
Classify the intersection of the plane with each of the lines. Is there a one-point intersection (if so, give the coordinates of the point), no intersection because the line is parallel to the plane, or is the line in the plane?
Solution: The normal vector to the plane is $\vec{n}=\langle 1,2,3\rangle$.

- Line 1: the direction vector is $\overrightarrow{v_{1}}=\langle 2,1,-1\rangle$ and since

$$
\langle 1,2,3\rangle \cdot\langle 2,1,-1\rangle=2+2-3=1 \neq 0
$$

then Line 1 intersects the plane at one point. From the line we have $x=2 y-1$ and $z=-1-y$ so substituting into the plane equation:

$$
(2 y-1)+2 y+3(-y-1)=0 \quad \Rightarrow \quad y=0
$$

and so we have $x=-1$ and $z=-1$; hence $(-1,0,-1)$ is the point of interesection between Line 1 and the plane.

- Line 2: the direction vector is $\overrightarrow{v_{2}}=\langle 1,1,-1\rangle$ and since

$$
\langle 1,2,3\rangle \cdot\langle 1,1,-1\rangle=1+2-3=0
$$

then Line 2 is either parallel to the plane (no intersection) or in the plane (infinitely many solutions). So we test a point from the line. For example from reading the equations, we can see that $(1,2,0)$ is a point on the plane and

$$
1+2(2)+3(0)+4=9 \neq 0
$$

so Line 2 is parallel to the plane but not in it.
3. Consider the following vector-valued function, representing the trajectory of a particle:

$$
\vec{r}(t)=\sqrt{1+\cos 2 t} \vec{\imath}+3 \sin t \vec{\jmath}+2 \cos t \vec{k} .
$$

(a) Find all the open interval(s) on which $\vec{r}(t)$ is smooth.

Solution: We have:

$$
\overrightarrow{r^{\prime}}(t)=\left\langle\frac{-\sin 2 t}{\sqrt{1+\cos 2 t}}, 3 \cos t,-2 \sin t\right\rangle
$$

Note that $\overrightarrow{r^{\prime}}(t)$ is continuous and nonzero wherever it is defined but since it's undefined for $t=$ $\left(2 k+1 \frac{\pi}{2}\right)$ for any integer k, then

$$
\vec{r}(t) \text { is smooth on } \bigcup_{k \in \mathbb{Z}}\left(\frac{(2 k-1) \pi}{2}, \frac{(2 k+1) \pi}{2}\right)
$$

(b) Find the speed of the particle at $t=0$.

Solution: We have $\overrightarrow{r^{\prime}}(0)=\langle 0,3,0\rangle$ so its speed is $\left\|\overrightarrow{r^{\prime}}(0)\right\|=3$.
Now, for extra credit: the parametric curve lies entirely on which of the following surface(s)? Check all that apply. You need not justify your answers.the ellipsoid: $x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$,
$\sqrt{\checkmark}$ the hyperboloid of one sheet: $x^{2}+\frac{y^{2}}{9}-\frac{z^{2}}{4}=1$,
$\sqrt{\checkmark}$ the elliptic cylinder: $\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$,
\square the hyperbolic paraboloid: $x=\frac{y^{2}}{9}-\frac{z^{2}}{4}$.
4. A particle in space moves with acceleration:

$$
\vec{a}(t)=\left\langle 1, \frac{1}{2 \sqrt{t}}, 0\right\rangle \quad, \quad t \geq 1
$$

such that its velocity at $t=1$ is $\vec{v}(1)=\left\langle\frac{3}{2}, 1, \frac{\sqrt{3}}{2}\right\rangle$ and its position is $\vec{r}(1)=\left\langle 1, \frac{2}{3}, \sqrt{3}\right\rangle$.
(a) Find the position of the particle at $t=4$.

Solution:

$$
\begin{aligned}
\vec{t} & =\langle t, \sqrt{t}, 0\rangle+\overrightarrow{C_{1}} \\
\left\langle\frac{3}{2}, 1, \frac{\sqrt{3}}{2}\right\rangle=\vec{v}(1) & =\langle 1,1,0\rangle+\overrightarrow{C_{1}} \quad \Rightarrow \quad \overrightarrow{C_{1}}=\left\langle\frac{1}{2}, 0, \frac{\sqrt{3}}{2}\right\rangle \\
\Rightarrow \vec{t} & =\left\langle t+\frac{1}{2}, \sqrt{t}, \frac{\sqrt{3}}{2}\right\rangle \\
\vec{r}(t) & =\left\langle\frac{t^{2}}{2}+\frac{t}{2}, \frac{2}{3} t^{\frac{3}{2}}, \frac{t \sqrt{3}}{2}\right\rangle+\overrightarrow{C_{2}} \\
\left\langle 1, \frac{2}{3}, \sqrt{3}\right\rangle=\vec{r}(1) & =\left\langle 1, \frac{2}{3}, \frac{\sqrt{3}}{2}\right\rangle+\overrightarrow{C_{2}} \quad \Rightarrow \quad \overrightarrow{C_{2}}=\left\langle 0,0, \frac{\sqrt{3}}{2}\right\rangle \\
\Rightarrow \quad \vec{r}(t) & =\left\langle\frac{t^{2}+t}{2}, \frac{2}{3} t^{\frac{3}{2}}, \frac{\sqrt{3}}{2}(t+1)\right\rangle \quad \Rightarrow \quad \vec{r}(4)=\left\langle 10, \frac{16}{3}, \frac{5 \sqrt{3}}{2}\right\rangle .
\end{aligned}
$$

(b) Find the length of the curve between $t=1$ and $t=4$.

Solution:

$$
\begin{aligned}
s=\int_{1}^{4}\left\|\overrightarrow{r^{\prime}}(t)\right\| d t & =\int_{1}^{4} \sqrt{\left(t+\frac{1}{2}\right)^{2}+t+\frac{3}{4}} d t \\
& =\int_{1}^{4} \sqrt{t^{2}+t+\frac{1}{4}+t+\frac{3}{4}} d t \\
& =\int_{1}^{4} \sqrt{t^{2}+2 t+1} d t \\
& =\int_{1}^{4} \sqrt{(1+t)^{2}} d t \\
& =\int_{1}^{4} t+1 d t \\
& =\frac{t^{2}}{2}+\left.t\right|_{1} ^{4} \\
& =8+4-\frac{1}{2}-1=11-\frac{1}{2}=\frac{21}{2}
\end{aligned}
$$

5. Consider a point $P(1,0)$ in the domain of the surface

$$
z=x \cos y-y x^{2}+2(y+1) .
$$

Assume the surface represents a hilly area, modeled below:

(a) What is the rate of change of altitude at the point P when moving in the direction of the vector $\vec{v}=\langle 3,4\rangle$?
Solution: Let \vec{u} be the unit vector in the direction of \vec{v} :

$$
\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}=\frac{\langle 3,4\rangle}{\sqrt{9+16}}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle
$$

Then the rate of change is:

$$
\begin{aligned}
\left.\mathrm{D}_{\vec{u}} z\right|_{(1,0)} & =\left.\nabla z \cdot \vec{u}\right|_{(1,0)} \\
& =\left.\left\langle\cos y-2 x y,-x \sin y-x^{2}+2\right\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle\right|_{(1,0)} \\
& =\langle 1,1\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle \\
& =\frac{7}{5} .
\end{aligned}
$$

(b) What is the direction of maximum decrease at P ? I.e. if chased by a bear, which direction should P take to get down that hill the fastest? What is the rate of decrease in that direction?

Solution:

- direction: $-\nabla z(1,0)=\langle-1,-1\rangle$,
- rate of change: $-\|\nabla z(1,0)\|=-\sqrt{2}$.

6. Classify any critical points and then use Lagrange multipliers on the boundary and find the absolute maximum and minimum values of the function

$$
f(x, y)=2 x^{2}+3 y^{2}-4 x-5
$$

on the domain $x^{2}+y^{2} \leq 16, y \geq 0$.

Solution: The region is the upper part of the disk of radius 4:

We'll use the constraint $g(x, y)=x^{2}+y^{2}$ and then $h(x, y)=y$. First to find critical points, we solve:

- $\nabla f=\overrightarrow{0}$: since $\nabla f=\langle 4 x-4,6 y\rangle$, we have:

$$
\left\{\begin{array}{l}
4 x-4=0 \\
6 y=0
\end{array} \quad \Rightarrow \quad x=1, y=0\right.
$$

The point $(1,0)$ is in our region (barely because it's on the boundary) and since $f_{x x}=4>0$, $f_{y y}=6, f_{x y}=0$, and $d=4(6)-0^{2}>0$ then f has a relative minimum at $(1,0,-7)$.

- on the boundary $g(x, y)=16$ (with $y \geq 0$): since $\nabla g=\langle 2 x, 2 y\rangle$, we have:

$$
\nabla f=\lambda \nabla g \quad \Rightarrow \quad\left\{\begin{array}{l}
4 x-4=2 \lambda x \\
6 y=2 \lambda y
\end{array} \quad \Rightarrow \quad \text { either } y=0 \text { or } \lambda=3\right.
$$

- if $y=0$ then $x^{2}+0=16$ so $x=p m 4$;
- if $\lambda=3$ then $4 x-4=6 x$ so $x=-2$ and $(-2)^{2}+y^{2}=16$ so $y^{2}=12$ and $y=2 \sqrt{3}$ (only solution satisfying $y \geq 0$).
- on the boundary $h(x, y)=0$ (with $-4 \leq x \leq 4$): since $\nabla h=\langle 0,1\rangle$, we have:

$$
\nabla f=\lambda \nabla h \quad \Rightarrow \quad\left\{\begin{array}{l}
4 x-4=0 \\
6 y=\lambda
\end{array} \quad \Rightarrow \quad x=1 \text { and } y=0\right.
$$

which was found already through the search for critical points.
So putting all points of interest in a table:

x	y	z	
1	0	-7	relative minimum and
-4	0	43	absolute minimum
4	0	11	
-2	$2 \sqrt{3}$	47	

7. Find the moment of inertia about the y-axis I_{y} for a planar lamina R corresponding to the region below.

where the density $\rho(x, y)=y$.
Solution:

$$
\begin{aligned}
I_{y} & =\iint_{R} x^{2} y d A=\int_{0}^{\frac{\pi}{2}} \int_{1}^{2} r^{2} \cos ^{2} \theta r \sin \theta r d r d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \int_{1}^{2} r^{4} \cos ^{2} \theta \sin \theta d r d \theta \\
& =\left.\int_{0}^{\frac{\pi}{2}} \frac{r^{5}}{5}\right|_{1} ^{2} \cos ^{2} \theta \sin \theta d \theta \\
& =\frac{31}{5} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta \sin \theta d \theta=\frac{31}{5}\left[-\frac{1}{3} \cos ^{3} \theta\right]_{0}^{\frac{\pi}{2}}=\frac{31}{15}
\end{aligned}
$$

8. Consider the vector field $\vec{F}(x, y, z)=\left\langle x^{2} y, x y^{2}, 2 x y z\right\rangle$ acting on a closed surface S consisting of the boundary of a triangular prism with the following vertices:

We are interested in evaluating the flux of the vector field over the surface S. Since the component functions of \vec{F} have continuous first partial derivatives over the solid prism Q, apply the Divergence Theorem

$$
\underbrace{\oiint_{S} \vec{F} \cdot \vec{N} d S}_{\text {flux }}=\iiint_{Q} \operatorname{div} \vec{F} d V
$$

to evaluate the flux indirectly.
Solution: If we use the order $d z d x d y$ for Q we need its projection onto the $x y$-plane:

Now since the divergence of \vec{F} is:

$$
\operatorname{div} \vec{F}=2 x y+2 x y+2 x y=6 x y
$$

then the flux is:

$$
\begin{aligned}
\iiint_{Q} \operatorname{div} \vec{F} d V & =\int_{0}^{1} \int_{0}^{2-2 y} \int_{0}^{2} 6 x y d z d x d y=\int_{0}^{1} \int_{0}^{2-2 y} 12 x y d x d y=\left.\int_{0}^{1} 6 x^{2} y\right|_{0} ^{2-2 y} d y \\
& =\int_{0}^{1} 24 y(1-y)^{2} d y=\left|\begin{array}{cc}
u=8 y & d u=8 d y \\
d v=3(1-y)^{2} d y & v=-(1-y)^{3}
\end{array}\right| \\
& =\left[-8 y(1-y)^{3}\right]_{0}^{T_{0}}+\int_{0}^{1} 8(1-y)^{3} d y=-\left.2(1-y)^{4}\right|_{0} ^{1}=\boxed{2} .
\end{aligned}
$$

For extra credit, evaluate directly the flux. Note that you need to consider 5 surfaces separately including one which can be given by the following parametric representation: $\vec{r}(u, v)=\langle 2-2 u, u, v\rangle$ for $0 \leq u \leq$ $1,0 \leq v \leq 2$.
Solution: First let us label the five faces and their respective normal vectors:

Then note the few shortcuts along the way...

- on $S_{1}, y=0$ so $\vec{F}=<x^{2}(0), x(0)^{2}, 2 x(0) z>=\overrightarrow{0}$ along S_{1} and therefore, $\iint_{S_{1}} \vec{F} \cdot \vec{N} d S=0$;
- on $S_{2}, x=0$ so $\vec{F}=<(0)^{2} y,(0) y^{2}, 2(0) y z>=\overrightarrow{0}$ along S_{2} and therefore, $\iint_{S_{2}} \vec{F} \cdot \vec{N} d S=0$;
- on S_{3}, we can use the given parametrization $\vec{r}(u, v)=\langle 2-2 u, u, v\rangle$ for $0 \leq u \leq 1,0 \leq v \leq 2$. So

$$
\overrightarrow{r_{u}} \times \overrightarrow{r_{v}}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=\langle 1,2,0\rangle
$$

and since it is pointing outwards already, then we choose $\vec{N} d S=\langle 1,2,0\rangle d v d u$ and so:

$$
\begin{aligned}
\iint_{S_{3}} \vec{F} \cdot \vec{N} d S & =\int_{0}^{1} \int_{0}^{2}\left\langle(2-2 u)^{2} u,(2-2 u) u^{2}, 2(2-2 u) u v\right\rangle \cdot\langle 1,2,0\rangle d v d u \\
& =\int_{0}^{1} \int_{0}^{2} u(2-2 u)^{2}+2 u^{2}(2-2 u)+0 d v d u=\int_{0}^{1} u(2-2 u)(2-2 u+2 u)[v]_{0}^{2} d u \\
& =\int_{0}^{1} 8 u(1-u) d u=\left[4 u^{2}-\frac{8 u^{3}}{3}\right]_{0}^{1}=4-\frac{8}{3}=\frac{4}{3}
\end{aligned}
$$

- on S_{4}, we have that $\overrightarrow{N_{4}}=\langle 0,0,-1\rangle$ so only the P component of \vec{F} will survive; but $z=0$ on S_{4} so $P=2 x y(0)=0$ and therefore, $\iint_{S_{4}} \vec{F} \cdot \vec{N} d S=0$;
- on S_{5}, we have that $\overrightarrow{N_{5}}=\langle 0,0,1\rangle$ so only the P component wil survive again; this time $z=2$ and $P=2 x y(2) \neq 0$ everywhere so we need a representation of S_{4}; the easiest is to use the description of the face from the indirect computation done earlier (except now $z=2$), i.e.

$$
S_{5}=\{(x, y, 2): 0 \leq y \leq 1,0 \leq x \leq 2-2 y\}
$$

and therefore,

$$
\begin{aligned}
\iint_{S_{5}} \vec{F} \cdot \vec{N} d S & =\int_{0}^{1} \int_{0}^{2-2 y}\left\langle x^{2} y, x y^{2}, 4 x y\right\rangle \cdot\langle 0,0,1\rangle d x d y=\int_{0}^{1} \int_{0}^{2-2 y} 4 x y d x d y \\
& =\int_{0}^{1}\left[2 x^{2} y\right]_{0}^{2-2 y} d y=\int_{0}^{1} 2(2-y)^{2} y d y \\
& =\int_{0}^{1} 8 y(1-y)^{2} d y=\left|\begin{array}{cc}
u=8 y & d u=8 d y \\
d v=(1-y)^{2} & d y \quad v=-\frac{(1-y)^{3}}{3}
\end{array}\right| \\
& =\left[-8 y \frac{(1-y)^{3} 7^{1}}{3}\right]_{0}^{0}+\int_{0}^{1} \frac{8}{3}(1-y)^{3} d y=-\left.\frac{2}{3}(1-y)^{4}\right|_{0} ^{1}=\frac{2}{3}
\end{aligned}
$$

So putting them all together, we have:

$$
\oiint_{S} \vec{F} \cdot \vec{N} d S=0+0+\frac{4}{3}+0+\frac{2}{3}=2
$$

Note that even though we get the same result, using the divergence theorem was much easier...
9. Consider a particle moving through space along the curve C given by the following parametric representation:

$$
\vec{r}(t)=\left\langle t^{3}-3 t+1, \frac{t}{2}+1, \frac{t}{2} \cos \pi t\right\rangle \quad, \quad 0 \leq t \leq 2
$$

and subject to the vector field: $\vec{F}(x, y, z)=\left\langle y^{3}-2 x z, 3 x y^{2}+2 z, 2 y-x^{2}\right\rangle$.
(a) Show that \vec{F} is conservative.

Solution:

$$
\operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y^{3}-2 x z & 3 x^{2} y+2 z & 2 y-x^{2}
\end{array}\right|=(2-2) \vec{\imath}-(-2 x+2 x) \vec{\jmath}+\left(3 y^{2}-3 y^{2}\right) \vec{k}=\overrightarrow{0}
$$

so \vec{F} is conservative.
(b) Find all potential functions for the field \vec{F}.

Solution:

$$
\begin{aligned}
f(x, y, z) & =\int y^{3}-2 x z d x=x y^{3}-x^{2} z+C_{1}(y, z) \\
f(x, y, z) & =\int 3 x y^{2}+2 z d y=x y^{3}+2 y z+C_{2}(x, z) \\
f(x, y, z) & =\int 2 y-x^{2} d z=2 y z-x^{2} z+C_{3}(x, y) \\
\Rightarrow \quad f(x, y, z) & =x y^{3}-x^{2} z+2 y z+C
\end{aligned}
$$

(c) Use the Fundamental Theorem of Line Integrals to compute the work done on the particle.

Solution: Since $\vec{r}(0)=\langle 1,1,0\rangle$ and $\vec{r}(2)=\langle 8-6+1,2,1\rangle=\langle 3,2,1\rangle$ then

$$
W=\int_{C} \vec{F} \cdot d \vec{r}=f(3,2,1)-f(1,1,0)=3(8)-9(1)+2(2)(1)-1+0-0=18
$$

For extra credit, using the same initial and final points, find a simpler path between them and use it to compute the work again - directly this time.
Solution: We can use paths parallel to the axes and use the differential form:

- $C_{1}:(1,1,0) \rightarrow(3,1,0)$ then

$$
\int_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{C_{1}} M(x, 1,0) d x+\underline{N(x, 1,0)} \overrightarrow{d y}^{0}+\underline{P(x, 1,0)} \overrightarrow{d z}=\int_{1}^{0} 1-2 x(0) d x=\int_{1}^{3} d x=2
$$

- $C_{2}:(3,1,0) \rightarrow(3,2,0)$ then

$$
\begin{aligned}
\int_{C_{2}} \vec{F} \cdot d \vec{r} & =\int_{C_{2}} \xrightarrow[M(3, y, 0) d x]{0} N(3, y, 0) d y+\underline{P(3, y, 0) d z} \overrightarrow{0}^{0} \\
& =\int_{1}^{2} 3(3) y^{2}+2(0) d y=\int_{1}^{2} 9 y^{2} d x=\left[3 y^{3}\right]_{1}^{2}=24-3=21
\end{aligned}
$$

- $C_{3}:(3,2,0) \rightarrow(3,2,1)$ then

$$
\begin{aligned}
\int_{C_{3}} \vec{F} \cdot d \vec{r} & =\int_{C_{3}} \xrightarrow[M(3,2, z) d x]{0}+\overrightarrow{N(3,2,2)}_{0}^{0} P(3,2, z) d z \\
& =\int_{0}^{1} 2(2)-(3)^{2} d x=\int_{0}^{1}-5 d x=-5
\end{aligned}
$$

So putting it all together,

$$
W=\int_{C} \vec{F} \cdot d \vec{r}=2+21-5=18
$$

10. Use Green's Theorem to evaluate

$$
\oint_{C}\left(\sin \left(x^{2}\right)+3 y\right) d x+(\ln y+4 x) d y
$$

where C is the closed curve composed of the graph of $y=\frac{x^{2}}{4}+1$ for $0 \leq x \leq 2$ followed by the line segment going from $(2,2)$ to $(0,1)$ as illustrated below:

Solution: The piecewise smooth closed simple curve C is oriented positively and the line segment has equation $y=\frac{x}{2}+1$. Setting $M=\sin \left(x^{2}\right)+3 y$ and $N=\ln y+4 x$, we have $M_{y}=3$ and $N_{x}=4$ and therefore by Green's theorem:

$$
\begin{aligned}
\oint_{C} M d x+N d y & =\iint_{R}\left(N_{x}-M_{y}\right) d A=\int_{0}^{2} \int_{\frac{x^{2}}{4}+1}^{\frac{x}{2}+1}(4-3) d y d x \\
& =\int_{0}^{2} \frac{x}{2}-\frac{x^{2}}{4} d x=\frac{x^{2}}{4}-\left.\frac{x^{3}}{12}\right|_{0} ^{2}=1-\frac{8}{12}=\frac{4}{12}=\frac{1}{3}
\end{aligned}
$$

