Surface integrals
two kinds
a) dan't core about orientation

In effect: $d S \rightarrow\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ dude

$$
\rho(x, y) \rightarrow \rho(\vec{r}(u, v))
$$

And bounds of integration reed to describe domain in terms of u, v.

Resulting object $\iint_{S} \rho(x, y z) d S$

$$
\begin{aligned}
& \text { es. } \int_{\Sigma} \int_{z} d S \\
& \vec{r}(u, v)=\left\langle u, v, \sqrt{u^{2}+v^{2}}\right\rangle \\
& d S=\sqrt{1+\frac{f_{u}^{2}+v^{2}}{}} d u d v \quad f(u, v)=\sqrt{x^{2}+y^{2}} \\
& f_{u}=\frac{u}{\sqrt{u^{2}+v^{2}} \quad f_{v}=\frac{v}{u^{2}+v^{2}}} \quad f_{u}^{2}+f_{u}^{2}=\frac{u^{2} \pi^{2}}{u^{2}+v^{2}}=1 \\
& d S=\sqrt{2} d u d v \quad e^{b} \\
& \iint\left(u^{2}+v^{2}\right) \\
& \frac{1}{2} d A=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} v^{2} r d r d \theta \\
& E
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi\left(\frac{15}{4}\right) \sqrt{2} \\
& =\frac{15 \sqrt{2}}{2} \pi
\end{aligned}
$$

out sphere

$$
\begin{aligned}
& \int_{S} \int_{S} x^{2} d S \\
& \text { lust class } \\
& d S=\cos v d u d v \\
& \vec{r}(u, v)=\langle\cos u \cos v, \sin u \cos v, \sin v\rangle \\
& \int_{-\frac{\pi}{2}}^{\pi / 2} \int_{0}^{2 \pi} \cos ^{2} u \cos ^{2} v \cos v d u d v \\
& =\int_{-\pi}^{\pi / 2} \cos ^{3} v \frac{1}{2} d v \cdot 2 \pi \\
& =\int_{-\pi}^{\pi / 2}\left(1-\sin ^{2} v\right) \cos (v) d v \cdot \sigma \\
& =\left(\left.\sin (v)\right|_{-\frac{\pi}{2}} ^{\pi / 2}-\left.\frac{\sin ^{3}(v)}{3}\right|_{-\pi / 2} ^{\pi / 2}\right) \cdot \pi
\end{aligned}
$$

$$
=\left(2-\frac{2}{3}\right) \cdot \pi=\frac{4 \pi}{3}
$$

Flux

hus passed through the plum,
Muss flux: rate at which muss passes thraigh:
$\rho|\vec{V}| \Delta x \Delta y \quad$ (exits of muss per time).

Whit if \vec{v} is parallel to surface?

No fluid passes through Zero flux.

What if \vec{V} is neither perpendicular, nor parallel?

$$
\begin{aligned}
\vec{v} & =\vec{w}+c \vec{n} \quad \vec{w} \cdot \vec{n}=0 \\
\vec{v} \cdot \vec{n} & =\vec{w} \cdot \vec{n}+c \vec{n} \cdot \vec{n} \\
& =0+c \cdot 1=c
\end{aligned}
$$

$$
\vec{v}=\underset{\substack{\uparrow \\ \text { parallel } \\ \text { no flux }}}{\vec{w}+\underbrace{(\vec{v} \cdot \vec{n}) \vec{n}}_{\longrightarrow \text { sooce of all flux }}}
$$

$$
|(\vec{v} \cdot \vec{h}) \vec{h}|=|\vec{v} \cdot \vec{n}|
$$

Muss flux: $\quad \rho|\vec{V} \cdot \vec{n}| \Delta x \Delta y$

Well drop the absolute values.
positive flux crosses surface in one direction.
negative flux cosses surface in opposite directors.
$\rho \vec{V} \cdot \vec{n} \Delta_{x} \Delta_{y} \rightarrow$ rate at which mass crosses a small region of suffree with area $\Delta_{x} \Delta_{y}$

