Let's put Daurd in space

Hew much work?

wok dane by fare:

$$
\vec{F}, \vec{w}
$$

$$
n \cdot g=100 \mathrm{~kg} 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \approx 1000 \mathrm{~N}
$$

Work dore by suits $\approx-400 \mathrm{~km} \cdot 1000 \mathrm{~N}$

$$
\begin{aligned}
& =-4 \times 10_{\mathrm{m}}^{5} 1 \times 10^{3} \mathrm{~N} \\
& =-4 \times 10^{8} \frac{\underbrace{\mathrm{~J}}_{\mathrm{Jm}}}{\mathrm{~N}} \\
\text { kWh } & =3,6 \times 10^{6} \mathrm{~J}
\end{aligned}
$$

$\left.\begin{array}{l}\text { work you put in } \\ \text { has to compasate } \\ \text { and it's } 100 \text { tuh }\end{array}\right)$ (10 days of oor havsehald enegy)

But this isst exuct It should be less becuse force of jrwity is less as yiun Go up.

- 8.68

8,4x
$\cdot 200 \quad g_{200}=9.218$
9.5.

$$
-9.8 \cdot 100 \cdot 200 \times 10^{3}+\left(-9,22 \cdot 100.200 \times 10^{3}\right)
$$

$\sum F\left(h_{i}^{*}\right) \Delta h \leftarrow$ total work loe:

the wark lone on me by gmuity goins of the care is the resative of the work joing down the cave.

I neaid to tell you abent a difforit kard of line intignel that deprods an the orentinos of the creve.

$$
\begin{array}{ll}
\int_{C} d x & \text { (usis coordintas) } \\
\vec{r}(t)=\langle u(t), y(t), z(t)\rangle
\end{array}
$$

$$
\begin{aligned}
& \Delta x=x^{\prime}(t) d A L t \\
& \sum \Delta x \approx \sum x^{\prime}\left(t_{i}^{*}\right) \Delta t \\
& \\
& \rightarrow \int_{t_{0}}^{t_{1}} \frac{d x}{d t} d t \\
& x\left(t_{1}\right)-x\left(t_{0}\right) \text { by } F T C
\end{aligned}
$$

This doesn't Repeat on \vec{r} except if we so buckands, The sign chases!

Mare queully

$$
\int_{C} \rho(x, z) d x=\int_{t_{0}}^{t_{1}} \rho(\vec{r}(t)) \frac{d x}{d t} d t
$$

$$
\begin{aligned}
& \int_{C}(M d x+N d y+P d z) \\
& =\int_{t_{0}}^{t_{1}}\left(M(s[t)) \frac{d t}{d x}+\cdots+P(\pi \in) \frac{d z}{d t}\right) d t \\
& \text { e.g, } \vec{r}(t)=t \hat{\imath}+t^{2} \hat{\imath}+t^{3} \hat{k} \\
& 0 \leq t \leq 1 \\
& 12 \\
& \vec{n}^{\prime}(t)=\left\langle 1,2 t, 3 t^{2}\right\rangle \\
& \int_{C} x y d x+3 z x d y+5 x^{2} y z d z \\
& =\int_{0}^{1} t^{3}+6 t^{s}-15 t^{9} d t=-\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& G M=3,98 \times 10^{14} \\
& G M \cdot m\left(\frac{1}{r_{1}}-\frac{1}{r_{0}}\right)= \\
& -3,69 \times 10^{8} \mathrm{~J}
\end{aligned}
$$

