Section 15,2

R

$$
\begin{aligned}
& \iint_{R} f(x, y) d A \\
& \int_{0}^{d} \int_{a}^{b} f(x, y) d x d y \\
& \int_{0}^{b} \int_{0}^{d} f(x, y) d y d x
\end{aligned}
$$

If f is ck .
If fuct it's trie for a broader cluss of rike functias. Here are sone

$$
\iint_{D} f\left(r_{i}\right) d A=\iint_{R} f\left(x_{r}\right) d A
$$

a $R \quad b$

$$
\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

e.g. intesnte $f(x, 4)=4-y$ in resian bended by

$$
x--2, \quad y=0, \quad y=1-x
$$

$$
\int_{-2}^{1} \int_{0}^{1-x} 4-y d y d x
$$

$$
=\left.\int_{-2}^{1}\left(4 y-\frac{y^{2}}{2}\right)\right|_{\partial} ^{(1-x)} d x
$$

$$
=\int_{-2}^{1} 4(1-x)-\frac{(1-x)^{2}}{2} d x
$$

$$
=4 x-\frac{4 x^{2}}{2}+\left.\frac{(1-x)^{3}}{6}\right|_{-2} ^{1}
$$

$$
=4-2-\left[-8-8+\frac{27}{6}\right]
$$

$$
\begin{aligned}
& =2+8+8-\frac{9}{2} \\
& =18-4-\frac{1}{2}=14-\frac{1}{2}=\frac{27}{2}
\end{aligned}
$$

K.s. $\quad z=4-x^{2}-y^{2}$

Find raseid lonade th where al $z=0$

$$
\int_{-2}^{2} \int_{-\sqrt{4 x^{2}}}^{\sqrt{4-x^{2}}} 4-x^{2}-x^{2} d y d x
$$

$$
\begin{aligned}
& \int_{-2}^{2}\left[\left.\left(44-x^{2} 4-\frac{y^{3}}{3}\right)\right|_{-\sqrt{4-x^{2}}} ^{\sqrt{4-x^{2}}}\right]^{2} d x \\
& \int_{-2}^{2}\left[\left(4-x^{2}\right)^{2} \sqrt{4-x^{2}}-\frac{2\left(\sqrt{4-x^{2}}\right)^{3}}{3}\right] \& x \\
& \int_{-2}^{2} \frac{4}{3}\left(4-x^{2}\right) \sqrt{4-x} d x \\
& \frac{4}{3} \int_{-2}^{2}\left(4-x^{2}\right)^{3 / 2} d x \quad d x=2 \cos \theta d \theta \\
& \frac{4}{3} \int_{-\pi / 2}^{\pi / 2} 4^{3 / 2}\left(\cos ^{2} \theta\right)^{3 / 2} 2 \cos \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{64}{3} \int_{-\pi / 2}^{\pi / 2} \cos ^{4} \theta d \theta \\
&= \frac{64}{3}\left[\frac{1}{4} \cos ^{3} x \sin x+\frac{3}{8} \cos x \sin x+\frac{3}{8} x\right]_{-\pi / 2}^{\pi / 2} \\
&= 8 \pi \\
& \int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x \\
& \int_{0}^{1} \int_{0}^{4} \sin \left(y^{2}\right) d x d y=\int_{0}^{1} d y^{1} \sin \left(y^{2}\right) d y \\
& y_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{1}{2}(-\cos (1))\right|_{y} \\
& =\frac{1}{2}[-\cos (1)+\cos (0)] \\
& =\frac{1}{2}[1-\cos (1)]
\end{aligned}
$$

Sectibr 15.3

Polin coorduntes

like a little rectionsle lensth Δr. width? deperds en as
 totul circunfrace $2 \pi \sigma$ port with asle θ

$$
\frac{\theta}{2 \pi} 2 \pi n=\theta r
$$

wrea is approximentry
$r \Delta r \Delta \theta$

You want to integrale

$$
\iint_{R} f(x, y) d A
$$

$$
\int_{\widehat{R}} f(r \cos \theta, r \sin \theta) \underbrace{d \widehat{A}}_{r d r d \theta} \quad \iint_{R} f(x, y) \frac{d A_{1}}{d x d y}
$$

e.9 $\frac{7}{2}-7$

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{2}^{7} 1 r d r d \theta & =\left.\int_{0}^{2 \pi} \frac{r^{2}}{2}\right|_{2} ^{7} \\
& =\pi\left(7^{2}-2^{2}\right) \\
& =\pi 4 s
\end{aligned}
$$

$$
d d y=r d i d \theta
$$

$$
\iint_{R} f\left(x_{i, v}\right) d t=\iint_{S} f\left(x(u,), \left.y((, v))| | \frac{\partial(x, y)}{\partial(w, v)} \right\rvert\, d A(m, v)\right.
$$

$$
\int_{-w(u)}^{u(b)} f(u) d u=\int_{a}^{b} f(u\left(w_{1}\right) \underbrace{u^{\prime}(w) d w}_{\frac{\partial u}{\partial w}}
$$

$$
=\frac{13}{6}
$$

$$
(3,0) \rightarrow(2,2)
$$

$$
\begin{gathered}
\iint_{S} e^{u / v} \frac{1}{2} d u d v \\
1_{2} \int_{1}^{2} \int_{-v}^{v} e^{w / v} d u d v
\end{gathered}
$$

$$
\begin{aligned}
& u=x+y \rightarrow \frac{u+v}{2} x \\
& v=\alpha-y \quad \frac{u-v}{2}=y \\
& \frac{\partial y}{a}=\frac{1}{2} \quad \frac{\partial y}{\partial}=-\frac{1}{2} \\
& (1,0) \rightarrow(1,1) \quad(0,-1) \rightarrow(-1,1)
\end{aligned}
$$

$$
\begin{aligned}
& \left.L \int_{2}^{2} v e^{u / v}\right|_{u=-v} ^{u v} d v \\
& \frac{1}{2} \int_{1}^{2} v\left[e-e^{-1}\right] d v \\
& \left.\frac{1}{2}\left(e^{-1}-e\right) \frac{v^{2}}{2}\right|_{1} ^{2} \\
& \sinh (1)\left[2-\frac{1}{2}\right]=\frac{3}{4} \sinh (1)
\end{aligned}
$$

Vector Fields

\uparrow
water in a pipe
Flow of water.
At each point, water hus a velocity, a vector \vec{V}.
At the edge of the pipe, velocity is zed.
For "Poiseille"flw", velour eneyulee is m \hat{k} direction, and hus a pantoolic pos file

$$
\vec{V}(x, y, z)=\frac{r^{2}-x^{2}-z^{2}}{r^{2}} \hat{k}
$$

$(\vec{v}$ is independent of y, varuble down the pipe

This is as example of a vector field.

In $\Omega \subseteq \mathbb{R}^{2}$, asisns ench pount a 2 -dvector,
In $\Omega \in \mathbb{R}^{3}$, assisis $\ldots \ldots$ 3ductor

We've alvady seen these

$$
\begin{aligned}
& F(x, y)=x^{2}-y^{2} \\
& \vec{\nabla} F=2 x \hat{\imath}-2 y \hat{\jmath} \\
& (x, y) \longmapsto \vec{\nabla} F
\end{aligned}
$$

Here's cuother.

Eledric cherge: C

$$
e=-1,6 \times 10^{-19} C \text {, e.g. }
$$

Electic field \vec{E}.

Job: A portizle with chase q eperincos a force

$$
q \vec{E} \frac{d}{d t}(m v)=q \vec{E}
$$

1
\downarrow

You cont see if but in principle \vec{E} is evenutere.
E.s: A stations point particle with chase Q gerentes an electric field

$$
\begin{aligned}
\int_{0_{0}}^{\dot{x}} \quad \vec{E} & =\frac{\vec{x}}{|\vec{x}|^{3}} Q \\
& =\frac{Q}{|\vec{x}|^{2}}, \frac{\vec{x}}{|\vec{x}|}
\end{aligned}
$$

q unit vector

$$
\searrow \Perp \mathscr{L}
$$

$$
\text { decays like }|\vec{x}|^{2}
$$

$$
Q<0
$$

Egg: Grit.
A point particle at \vec{O} of miss M Gerentes a sur field

$$
\vec{g}=\frac{G M \vec{x}}{|\vec{x}|^{3}}=\frac{G M}{|\overrightarrow{\mid}|^{2}} \frac{\vec{x}}{|\vec{x}|} \quad[G]=\frac{[F]\left[L^{2}\right]}{[m]^{2}}
$$

$\frac{[m][L]}{[T]^{2}}$
and another partite with mass ma at position \bar{x} expricces n fore $\frac{\left[L^{3}\right]}{\left[T^{2}\right][m]}$ die to sruity

$$
\vec{F}=m \vec{g}=-
$$

$$
6.67 .10^{-11} \frac{\mathrm{n}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}
$$

$$
\frac{d y}{d x}=y
$$

$$
\begin{aligned}
& y(t)=e^{t} \\
& y(t)=-2 e^{t} \text { are solutions }
\end{aligned}
$$

Associated vector field, called the direction fred

$$
\vec{F}=\underset{1}{\imath} \hat{\imath}+y \hat{\jmath}
$$

$$
\begin{aligned}
& \vec{r}(t)=\langle t, y(t)\rangle \\
& \vec{r}^{\prime}(t)=\left\langle 1, y^{\prime}(t)\right\rangle=\langle 1, y\rangle
\end{aligned}
$$

A curve $\vec{r}(t)$ is called an integral are of a vector field \vec{F} if
for all t, $\vec{r}^{\prime}(t)=\vec{F}(\vec{r}(t))$.

$$
\begin{aligned}
\vec{r}^{\prime}(t)=\left\langle t, C e^{t}\right\rangle \quad & x(t)=t \\
& y(t)=c e^{t} \\
\vec{r}^{\prime}\left(D=\left\langle 1, C e^{t}\right\rangle=\right. & \hat{c}+\left(e^{t} \hat{\jmath}=\hat{c}+y(t) \hat{\jmath}\right. \\
& x(t)=t \quad y(t)=C e^{t}
\end{aligned}
$$

We hue seen that the sadist provides an example of vector fields,

Def: A vector field \vec{F} is conservative if a faction sit,

$$
\vec{F}=\vec{\nabla} f
$$

in whit cause f is called a potential function for \vec{F}

$$
\begin{aligned}
& \text { e.g. } \left.f(\vec{x})=\frac{1}{|\vec{x}|}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \operatorname{in} \right\rvert\, \pi^{3} \backslash\{0\} \\
& \frac{\partial f}{\partial x}=-x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} \\
& \vec{\nabla} f=\frac{-1}{|\vec{x}|^{3}}(x \hat{\imath}+y \hat{\jmath}+z \hat{k})
\end{aligned}
$$

$$
=-\frac{\vec{x}}{|\vec{x}|^{3}}
$$

e.g. $f=-\frac{G M}{|\vec{x}|}$ is called the swe potating
$V=\frac{Q}{|\vec{x}|} \quad$ is called he electrce potatul

$$
\begin{aligned}
& -\vec{\nabla} f=\vec{g} \\
& -\vec{\nabla} V=\vec{E}
\end{aligned}
$$

Does $\quad y \hat{\imath}+3 x \hat{\jmath}$ hie a potantioll?

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=4 & \frac{\partial f}{\partial x}=3 x \\
\frac{\partial f}{\partial x y y}=1 & \frac{\partial f f}{\partial x_{y}}=3
\end{array} \quad 1+3,200 .
$$

