What's on the exam??
Chapter 14

$$
\mid 5.1-15.4
$$

What are the bis topics:

- limits ae complicated
- partial derivatives
- gradient
- linear appose diffectiralo
- chain rule
- critical points, optimicutiar
- use D to distinguish max/anin/suddle
- set up a double integral us an iteatred integral
- computation of ar itentad integral dy rave-soy order
- set up an interval in polar coordinates
- computation of
a) moments of mas
b) centroids
c) moments of inertia
d) probabilities
e) ores $(7-d)$
$f)$ volumes (3-d)

9) mass from density
h) foo fran too densify

Common quir omors

Suppose I tell you
$P(x, z)$ pessore

$$
\frac{d}{d t} P(x(t), y(t))=\frac{\partial P}{\partial x} \frac{d x}{d t}+\frac{\partial P}{\partial y} \frac{d y}{d t}
$$

chuin rute.

$$
=\vec{\nabla} P \cdot \vec{r}^{\prime}(t)
$$

\rightarrow this is uly we care about the gindient.
$\vec{\nabla} p$
What if I only let you travel at ont speed, $\left|\vec{r}^{\prime}\right|=1$

$$
\begin{aligned}
\vec{\nabla} P \cdot \vec{r}^{\prime} & =|\vec{\nabla} P|\left|\vec{r}^{\prime}\right| \cos \theta \\
& =|\vec{\nabla} P| \cos \theta
\end{aligned}
$$

So $|\bar{\nabla} p|$ is the biggest rate ofcluge your see euler truelling at unit speed al you see if when $\cos \theta=0 \Rightarrow \theta=0$.

$$
\frac{d}{d t} T(\vec{r}(t))
$$

$$
\begin{aligned}
& \vec{r}(0)=(2,3) \quad \vec{r}^{\prime}(0)=- \\
& \left.\left.\frac{\partial T}{\partial x}\right|_{(2,3)} \quad 5 \quad \frac{\partial T}{\partial /}\right|_{(2,3)}=7
\end{aligned}
$$

Limits:

$$
\begin{aligned}
& \left.\lim _{f(x, y}\right)=L \text { mems what? } \\
& (x, 4) \rightarrow(0,0) \\
& \frac{x y}{x^{2}+y^{2}} \\
& y=m x \\
& \frac{m x^{2}}{x^{2}+n^{2} x^{2}}=\frac{m}{1+m^{2}} \quad(x \neq 0) \\
& \uparrow \\
& m=0 \Rightarrow 0 \\
& m=1 \Rightarrow l_{2} \\
& n=3 \Rightarrow 3 / 10 \\
& m=00 \Rightarrow 0 \\
& m=1 / 3 \Rightarrow \frac{1}{3} \cdot \frac{1}{1+\left(\frac{1}{3}\right)^{2}} \\
& \Rightarrow \frac{3}{10}
\end{aligned}
$$

Optimization Models

$$
\begin{array}{ll}
f(x, y)=x^{2}+y^{2} & \bar{\nabla} f=0 \text { at }(0,0) \\
f(x, y)=-x^{2}-y^{2} & \text { h all cases } \\
f(x, y)=x^{2}-y^{2} & D=4 \\
H=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \begin{array}{l}
\text { canst tall } \\
\text { mix fam } \\
\text { min }
\end{array} \\
H=\left[\begin{array}{ll}
-2 & 0 \\
0 & -2
\end{array}\right] \quad D=4 \\
H=\left[\begin{array}{ll}
2 & 0 \\
0 & -2
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
& f(x, y)=x^{4}+y^{4} \\
& f(x, y)=-x^{4}-y^{4} \\
& f(x, y)=x^{4}-y^{4} \quad D=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { of } \overrightarrow{0} \\
& \text { in all coses } \\
& D=0 \text { is indeteminates }
\end{aligned}
$$

$$
\begin{gathered}
\left\langle 4 x-4 y, 4 y^{3}-4 x\right\rangle \\
4 x-4 y=0 \Rightarrow x=y \\
4_{1}^{3}-4 x=0 \text { an } f=y \Rightarrow \\
4\left(y^{3}-y\right)=0
\end{gathered}
$$

$$
\begin{aligned}
& 4\left(y^{2}-1\right) y=0 \\
& y=0, y= \pm 1
\end{aligned}
$$

Just 3 points ($y=x$ is a caid.fion)
3. (7 pts.) Give an equation for the tangent plane to the surface $x^{2}-2 y^{2}+z^{2}+y z=2$ at the point

$$
\begin{array}{ll}
F(y, y, z)= & \vec{\nabla} F=\langle 4,-5,1\rangle \\
F_{x}=2 x & \\
F_{y}=-4 y+z & 4(x-2)-5(y-1)+1(z+1)=0 \\
F_{z}=y &
\end{array}
$$

4. (15 pts. -5 pts . each) The temperature at a point (x, y, z) is given by

$$
T(x, y, z)=200 e^{-x^{2}-3 y^{2}-9 z^{2}}
$$

where T is measured in ${ }^{\circ} C$, and x, y, z are measured in meters.
(a) Find the rate of change of the temperature at the point $(2,-1,2)$ in the direction towards the point $(3,-3,3)$. GIVE UNITS.
(b) At $(2,-1,2)$, in what direction does T increase most rapidly?
(c) What is the maximum rate of change of T at $(2,-1,2)$, among all directions?
5. (12 pts.) Reverse the order of integration in the following integral, and then evaluate it.

$$
\int_{0}^{4} \int_{\sqrt{y}}^{2} \sqrt{x^{3}+1} d x d y
$$

6. (10 pts.) Ohm's law states that in an electrical circuit the current, I, depends on the voltage, V, and resistance, R, by

$$
I=V / R
$$

Suppose at some moment $R=100 \mathrm{ohms}, V=32$ volts, $d R / d t=0.03 \mathrm{ohms} / \mathrm{s}$, and $d V / d t=-0.01$ volts/s. Determine $d I / d t$ at that moment. GIVE UNITS. (Hint: Use the multivariable chain rule. The unit 'volt/ohm' is also called an 'ampere'.)
7. (12 pts.) Use the method of Lagrange multipliers to find the point on the sphere $x^{2}+y^{2}+z^{2}=70$ that minimizes $f(x, y, z)=2 x+6 y+10 z$.
8. (12 pts. -3 pts. each) Complete the following.
(a) The average value of a function $f(x, y)$ over a 2 -dimensional region R is given by the formula:

$$
\frac{1}{\operatorname{arace}(R)}
$$

(b) In spherical coordinates, $d V$ is:

(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2}-x y^{2}}{x^{2}+y^{2}}$ does not exist since:

$$
y=m x
$$

(d) The geometric relationship between the level curves of a function $z=f(x, y)$ and the gradient vectors $\nabla f(x, y)$ is:
orth

