So far, lats ot attention an two partial derivatives

$$
\frac{\partial f}{d x} \frac{d f}{\partial y}
$$

These are nates af dune in x, y directions But what about the directions?
$T(y, y) \rightarrow$ tompentione.

Now bur buy walks on a striaght line

$$
\vec{l}(t)=\left\langle x_{0}, y_{0}\right\rangle+\langle a, b\rangle t
$$

$T(\vec{l}(t))$ is rate of change of temp as buy meres on a straight line

$$
T(\vec{l}(\partial))=T\left(x_{0}, y_{0}\right)
$$

$\left.\frac{d}{d t}\right|_{t=0} T(\vec{l}(t))$ is the rate of chime
of temp if at (x, y) ail mans with velocity $\langle a, b\rangle$.
It is known as the directional derviative of T. If reeds two ingredients
a) Where $\quad\left(\right.$ Pow $\left._{0}\right)$
b) what velocity $\underbrace{\langle a, b\rangle}_{\vec{v}}$

Your teat only wats to use unit vectors \vec{u} int uses the rotation $D_{\vec{\rightharpoonup}} f\left(x_{0}, y_{0}\right)$

If f is differentiable, the chain mule applies

$$
\frac{d}{d t} f\left(x_{0}+t_{a}, y_{0}+t b\right)=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \cdot a+\frac{\partial t}{\partial y}\left(x_{0}, y_{0}\right) b
$$

Inportant specical cases: $\quad \vec{v}=\langle 1,0\rangle$

$$
\begin{gathered}
D_{\vec{v}} f(y, y)=\frac{\partial f}{\partial x}\left(\alpha_{0}, y_{v}\right) \\
\vec{v}=\langle 0,1\rangle \quad D_{\vec{v}} f(x, y)=\frac{\partial f}{\partial y}\left(\alpha_{0, y}\right)
\end{gathered}
$$

Upshot: If you knial $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ and $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$ then you cn conpute the vate of cluse of f in ay direction. (!)

This requies differenticibily
e.9. $f(x, y)=x \sin (2 y)$

Find directivial derivative at $(y, y)=\left(3, \frac{\pi}{3}\right)$ in the direction of a unit vector with angle $\theta=\pi / 6$.

$$
\begin{aligned}
& \vec{v}=\langle\cos \theta, \sin \theta\rangle= \\
&=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle \\
& \frac{\partial f}{\partial x}=\sin (24) \quad \frac{\partial f}{\partial y}=2 x \cos (24) \\
& \frac{\partial f}{\partial x}\left(3, \frac{\pi}{3}\right)=\sin \left(\frac{2 \pi}{3}\right) \quad \frac{\partial f}{2 y}\left(3, \frac{\pi}{3}\right)=6 \cos \left(\frac{2 \pi}{3}\right) \\
&==6 \cdot \frac{\sqrt{3}}{2} \\
&=\frac{1}{2} \\
& D f_{\vec{v}}\left(x_{0}, y_{0}\right)=-\frac{1}{2} \cdot \frac{\sqrt{3}}{2}+\frac{1}{2} 3 \sqrt{3}=\sqrt{3}
\end{aligned}
$$

Now look at

$$
\frac{\partial f}{\partial x} \cdot a+\frac{\partial f}{\partial y} \cdot b \quad \vec{v}=\langle a, b\rangle
$$

This looks like a dot product

$$
\begin{aligned}
& \left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \cdot \vec{V} \\
& \longrightarrow \text { we define } \vec{\nabla} f=\frac{\partial f}{\partial x} \hat{\imath}+\frac{\partial f}{\partial y} \hat{\jmath}
\end{aligned}
$$

and call it the gradient vector.
It detemins a vector at each location

$$
D_{\vec{v}} f=\vec{\nabla} f \cdot \vec{v}
$$

egg. $f(x, y)=\frac{\zeta_{2}}{2}\left(x^{2}+y^{2}\right)$

$$
\frac{\partial f}{\partial x}=x \quad \frac{\partial f}{\partial y}=y
$$

$$
\vec{\nabla} f=x \hat{v}+y \hat{\jmath}
$$

Compute $D_{\vec{v}} f$ at $(2,1)$ is

$$
\vec{v}=\langle-1,-3\rangle
$$

$$
\begin{aligned}
& \vec{\nabla} f=\langle 2,1\rangle \\
& \vec{\nabla} f \cdot \vec{v}=-2-3=-5
\end{aligned}
$$

$\vec{\nabla} f \cdot \vec{V}$ tells you how fort f ischarses if your move with velocity \vec{v}.

Suppose $\dot{\nabla} f \neq 0$ at some point
The dircutians \vec{v},

$$
\vec{v} \cdot \vec{f}=0
$$

form a line

