8) compositios of $f(g(x, y))$

Lust duss

$$
f(x, y)
$$

$\frac{\partial f}{\partial x}:$ treaty as corstat

$$
\begin{aligned}
& f(x, y)=\sin \left(x^{2} y\right) \\
& \frac{\partial f}{\partial x}=\cos \left(x^{2} y\right) 2 x y \\
& \frac{\partial f}{\partial y}=\cos \left(x^{2} y\right) x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y)=x^{2}+3 y^{2} \\
& (a, b)=(4,1) \\
& f_{x}(2,1)=2.4=8 \\
& f_{y}(2,1)=6
\end{aligned}
$$

f is incrusing more steeply in the x-direction
14.3 (contimad)
$2^{\text {nd }}$ portiol dervatives

$$
\left.\begin{array}{l}
f(x, y)=\sin \left(x^{2} y\right) \\
\frac{\partial f}{\partial x}=\cos \left(x^{2} y\right) \cdot 2 x y \\
\frac{\partial f}{\partial y}=\cos \left(x^{2} y\right) x^{2}
\end{array}\right] \begin{aligned}
& \text { How does } f \text { chinss } \\
& \text { in } x, y \text { directions }
\end{aligned}
$$

$$
\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial^{2} f}{\partial y \partial x}=-\sin \left(x^{2} y\right) 2 x^{3} y+\cos \left(x^{2} y\right) 2 x
$$ in y direction?

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y} & =-\sin \left(x^{2} y\right) 2 x^{3} y+2 x \cos \left(x^{2} y\right) \\
& =2_{x}\left[\cos \left(x^{2} y\right)-x^{2} y \sin \left(x^{2} y\right)\right]
\end{aligned}
$$

Renircable: $\frac{\partial^{2} f}{\partial y^{2} x}=\frac{\partial^{2} f}{\partial x^{2} y}$ in this case.

$$
\begin{aligned}
& \partial_{x}\left[\frac{x^{3} y-y^{3} x}{x^{2}+y^{2}}\right]=\frac{\left[3^{2} x^{2} y-y^{3}\right]\left(x^{2}+y^{2}\right)-\left[x^{2} y-y^{2} x\right] 2 x}{\left(x^{2}+y^{2}\right)^{2}} \\
& \text { at } x=0: \frac{-y^{5}}{y^{4}}=-y \\
& \partial_{y} \partial_{x} f=-1 \quad \text { or line } x=0 \\
& \partial_{y} f=\frac{\left(x^{3}-3 y^{2} x\right)\left(x^{2}+y^{2}\right)-\left(x^{3} y-y^{3} x\right)(2 y)}{\left(x^{2}+y^{2}\right)^{2}} \\
& a^{2} y=0 ; \frac{x^{3} \cdot x^{2}}{x^{4}}=x \\
& 2_{x} x_{y} f=1, \partial_{x} \partial_{y} f \neq \partial_{y} \partial_{x} f \\
& \Rightarrow \text { on lime } y=0
\end{aligned}
$$

Then If $f_{x y}$ ad $f_{y x}$
exist on a disk contains (a, b) and are contiviais, then

$$
f_{x y}=f_{y x} .
$$

$\left(2^{2 d}\right.$ portions agee $)$

Linear approximation.

$$
f(x)=5+7 x
$$

In some suse, these are the ext most complicated fundrous, after the constants.

Recall from calc I

Linemization of $f(x)$ at $t=a$

$$
L(x)=A+B(x-a) A, B \text { cumbers, }
$$

best approximates $f(x)$ "near" $x=a$.

How good?

$$
\begin{aligned}
L(a) & =f(a) \Rightarrow A=f(a) \\
L^{\prime}(a) & =f^{\prime}(a) \Rightarrow B=f^{\prime}(a) \\
L(x)=f(a) & +f^{\prime}(a)(x-a)
\end{aligned}
$$

linearization.
e.g.

$$
\begin{aligned}
& f(x)=\cos (x) \\
& a=\frac{\pi}{2} \\
& f(\pi / 2)=0 \\
& f^{\prime}(\pi / h)=-1
\end{aligned}
$$

$$
L(x)=-(x-\pi / 2)=\pi / 2-x
$$

Genealization to two input varalales

$$
\begin{array}{r}
f(x, y)=3+2 x-y \\
\uparrow{ }_{\text {umber }}
\end{array}
$$

$$
\begin{gathered}
A x+B_{y}+C \quad A, B, C \in \mathbb{R} \\
C+A(+-a)+B(y-b) \quad \rightarrow\left(C-a A-h B+A_{x}+B_{y}\right)
\end{gathered}
$$

What does the graph of such a faction look like?

$$
z=3+2 x-y
$$

$-2 x+y+z=3$ aha! It's soph B a place.

Functions of the form are called affine (loosely liver)

The linerization of a function $f(x, y)$ at (a, b) a function $L(x, y)$ of the for $C+A(x-a)+B(x-b)$
thot "beyt appoximatos" $f(x, y)$ nem (a,b).

How good?

$$
\begin{aligned}
& L(a, b)=f(a, b) \Rightarrow C=f(a, b) \\
& \frac{\partial L}{\partial x}(a, b)=f_{x}(a, b) \Rightarrow A=f_{x}(a, b) \\
& \frac{\partial L}{\partial}(a, b)=f_{y}(a, b) \Rightarrow B=f_{y}(a b) \\
& \partial(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a b)(y-b)
\end{aligned}
$$

e.s. Compute the linerization of

$$
\begin{aligned}
& f(x, y)=x^{2}+3 y^{2} \quad \text { at }(a, b)=(2,1) \\
& f(2,1)=4+3-7 \\
& f_{x}(x, y)=2 x \quad \left\lvert\, \begin{array}{l}
f_{y}(x, y)=6 y \\
f_{y}(2,1)=6
\end{array}\right.
\end{aligned}
$$

$$
L(x, y)=7+4(x-2)+6(y-1)
$$

The suph of the linewriation B kivoun as the tusent plue (at a, b),

$$
[\text { MATLAB }]
$$

