compositions of	$f_{1}\left(1+\frac{1}{2}\left(1+\frac{1}{2}\left(1+\frac{1}{2}\right)\right)\right)$
 	· · · · · · · · · · · · · · · · · · ·

55 f(4,4) <u>Jt</u> treat y constant as $= sin(x^2y)$ f(x,y)<u>dt</u> LOS (x2y) 2xy . H 605 (x74) x2 . 24 -9.1

	· · ·	f (x,) (a,b f _x (f _y (2,] 2,]) =	2. 		•	· · ·			· · · · · · · · · · · · · · · · · · ·													
	. '	t i a	 5 . î ^r	1.cra	sing	 . m	wre	. 5	leg	sh	 V	1 · 7	fle	•	X ·	· ·	lir	eT	fia	 1 .	•	•	•	
· ·	•	· ·	· ·	· ·	· ·	· ·	•	••••	•	•	· ·	•	••••	•	•	· ·	•	•	•	· ·	•	•	•	•
	•						•			•		•			•		•	•	•				•	•
• •	٠	• •	• •	• •	• •	• •	٠	• •		٠	• •		• •	۰	٠	• •	٠	٠		• •	۰	٠	٠	
• •	•			• •	••••		•	• •	•	•	• •	•		•	•	• •	•	•	•	• •	•	•	•	•
		· ·																						
		• •																						
		• •																						
		• •																						
		• •																						
		• •																						
		• •																						
• •		• •																						

14.3 (continued) 2nd portial derivatives $f(x,y) = sh(x^2y)$ cos(x2y) - 2xy <u>2</u>x = How does f chunges in X, Y directions $\frac{9.4}{9.4}$ = (85(x2y) x2 $-\sin(x^2y) 2x^3y + \cos(x^2y) 2x$ $\frac{9^{1}}{9}$ $\frac{9^{2}}{9}$ $\frac{9^{2}}{2}$ = $\frac{9^{1}}{9}$ S How does 25 dunce in y direction? - x2y sin(x2y) + cos(x2y) 227 - 2 24 De xe yexe $sm(x_{\gamma}) 2x_{\gamma} + 2x\cos(x_{\gamma})$ $2x \left[\cos(x^2y) - x^2y \sinh(x^2y) \right]$

 $\frac{\partial^2 f}{\partial x \partial x} = \frac{\partial^2 f}{\partial x \partial y}$ in This case. Renorkable: $\partial_{\chi} \left[\frac{x^{2}y - y^{3}\chi}{x^{2} + y^{2}} \right] = \frac{[3x^{2}y - y^{3}](x^{2} + y^{2}) - [x^{2}y - y^{2}](x^{2} + y^{2})}{(x^{2} + y^{2})^{2}}$ -75 at x = 0: $\frac{1}{y^{4}} = \frac{1}{y^{4}} = \frac{1}{y^{4}} = \frac{1}{y^{4}}$ -1 or line y = 0Jy dx F $= \frac{(\chi^{3} - 3\gamma^{2}\chi)(\chi^{2} + \gamma^{2}) - (\chi^{3} - \gamma^{3}\chi)(2\gamma)}{(\chi^{2} + \gamma^{2})^{2}}$ aty=D; $\frac{\chi^{3}}{\chi^{+}} = \chi$ $3/3/1 \pm 3/3/1$ 2,2,f= Don line y=0

Thin; If fixy and fix exist on a disk containing (a, b) and are continuous, they $f_{\star\gamma} = f_{\gamma \star}.$ (2rd partials agree) Linear approximation 5 + 7xf(x) = In some since, these are the next most complicated Landrow, after the constants.

Recall from calc I Linewization of fla) at r=a LW= A+B(2-a) A, B numbers, best approximates f(x) "new" += a. How good? $L(a) = f(a) \implies A = f(a)$ L'(a) = f'(a) = 7 B = f'(a)L(x) = f(a) + f'(a) (x-a)

	a griph of Minerization.
$\mathbf{x} \cdot \mathbf{y}, \mathbf{f}(\mathbf{x}) = \mathbf{cos}(\mathbf{x})$ $\mathbf{a} = \mathbf{T}_{\mathbf{z}}$ $\mathbf{f}(\mathbf{T}(\mathbf{z}) = \mathbf{O}$ $\mathbf{f}'(\mathbf{T}(\mathbf{x})) = -\mathbf{I}$	$L(\zeta) = -(\zeta - \pi/2) = \pi/2 - X$

Generalization to too input variables f(x,y) = 3 + 2x - y number numberA++By+C A,B,C eR C+A(+a)+B(y-5) -> (C-aA+bB +A++By) What does the sraph of such a function look like? Z= 3+2+ -1 aha! It's graph is a place. -2x+++==3 Functions of the form are called affine (loosely liver) The linerization of a function f(x,y) at (a,b)C + A(x-a) + B(y-b)a function L(x,7) of the form

that best approximates" fly) new last.	· · · · · ·
How good?	· · · · · ·
$L(a,b) = f(a,b) \Rightarrow C = f(a,b)$	· · · · · ·
$\frac{\partial L}{\partial X}(a,b) = f_X(a,b) = 7 A = f_X(a,b)$	
$\frac{\partial \chi}{\partial y} = \frac{f_{y}(a,b)}{f_{y}(a,b)} = \frac{f_{y}(a,b)}{$
$L(x_{M}) = f(a, 5) + f_{x}(a, 5)(x-a) + f_{y}(a, 5)(y-6)$
e.g. Compute the linewization of	· · · · · ·
$f(x,y) = x^{2} + 3y^{2} \text{at} (a,b) = (2,1)$ $f(3,1) = 4 + 3 = 7$	· · · · · ·
$f_{X}(x,y) = 2x \qquad f_{Y}(x,y) = 6y$ $f_{X}(z,y) = 4 \qquad f_{Y}(z,y) = 6y$ $f_{X}(z,y) = 4 \qquad f_{Y}(z,y) = 6$

L(4,y) = 7 + 4(x-2) + 6(y-1)The support the linearization is known the fugert place (at a,5), [MATLAB]