Newton 2 :
\vec{p} : momertion (total ernatity of notion)
\vec{F} : force

If object has mass un and velocity \vec{v}

$$
\vec{p}=m \vec{v}=m \vec{r}^{\prime}
$$

The rate of chase of momentum is face.

$$
\frac{d}{d t} \stackrel{\rightharpoonup}{p}=\stackrel{\rightharpoonup}{F}
$$

in constant: in $\vec{r}^{\prime \prime}=\vec{F} \quad(\vec{F}=m \vec{a})$

If you know the fore actors an an object, you knows the accelentian:

$$
\vec{a}=\frac{1}{m} \vec{F}
$$

And if you knew mitral position and velocity Then you con veccestrict the position,

Projectiles close to cath:

$$
\begin{aligned}
\vec{F}_{g} & =-9.8 \hat{k} \mathrm{~m} / \mathrm{s}^{2} \\
\vec{v}(t) & =\int-9.8 \hat{k} d t+\vec{C}_{1} \\
& =-9.8 t \hat{k}+\vec{c}_{1} \\
\vec{v}(0) & =\vec{c}_{1} \\
\vec{v}(t) & =-9.8 t \hat{k}+\vec{v}_{0} \\
\vec{r}(t) & =\int \vec{v}(t) d t+\vec{c}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{v}(t)=\frac{-9.8 t^{2}}{2} \tilde{k_{4}} \vec{v}_{0} t+\vec{C}_{2} \\
& \vec{r}(0)=0+0+\vec{C}_{2} \\
& \vec{r}(t)=\vec{r}_{0}+\vec{v}_{0}(t)-\frac{9.8}{2} t^{2} \hat{k} \\
& (9,8 \rightarrow 0 \Rightarrow \text { linew notion! }) \\
& \rightarrow \quad \vec{r}_{0}=\overrightarrow{0} \\
& \theta \\
& \vec{v}_{0}=v_{0} \cos (\theta) \hat{\imath}+v_{0} \sin \theta \hat{k} \\
& \vec{r}(t)=v_{0} \cos \theta t \hat{c}+\left[v_{0} \sin \theta t-\frac{9.8}{2} t^{2}\right] \hat{k} \\
& x=c t \quad t=x / c \\
& \alpha=\tan \theta \\
& z=\alpha x-\beta x^{2} \\
& \beta=\frac{9.8}{2} \frac{\sec ^{2} \theta}{v_{0}^{2}}
\end{aligned}
$$

This is a poratolic tragectoy.

When is $z=0$? $t\left[v_{0} \sin \theta-\frac{9.8 t}{2}\right]=0$
$t=0$ on

$$
t=\frac{2 v_{0}}{4.8} \sin \theta
$$

e.g. $V_{0}=150 \mathrm{~m} / \mathrm{s} \quad \theta=\pi / 4=45^{\circ}$

How for when otrikes gnual?

$$
\begin{aligned}
t & =\frac{300}{9.8} \frac{1}{\sqrt{2}} \approx 21.64 \\
x & =v_{0} \cos \theta t \\
& =150 \frac{1}{\sqrt{2}} \frac{300}{9.8} \frac{1}{\sqrt{2}}=\frac{150.150}{9.8}=2295 \mathrm{~m}
\end{aligned}
$$

which is vamy constatit.

\sin

$$
F_{G}=-\frac{G M_{S} m_{b}}{|\stackrel{\rightharpoonup}{r}|^{2}} \frac{\stackrel{\rightharpoonup}{r}}{|\stackrel{\rightharpoonup}{r}|}
$$

Accelention of hody:

$$
\begin{aligned}
\frac{d}{d t}\left(m b \vec{r}^{\prime}\right) & =-\frac{G M_{s} \vec{r}}{|\vec{r}|^{3}} \\
\vec{r}^{\prime \prime} & =-\frac{G M_{s}}{|\vec{r}|^{3}} \quad M_{s} \rightarrow M
\end{aligned}
$$

$\vec{p}=m_{6} \vec{r} \rightarrow$ "Inear momentuu"
$\vec{L}=\vec{r} \times \vec{p} \quad$ argub moneation abait \vec{o}_{0}
"tolal ament of agulur motion"
$\frac{d}{d t} \vec{p}=\vec{F}_{g} \neq 0$. The hod nos's mameiturs is not presurach.

But

$$
\begin{aligned}
\frac{d}{d t} \vec{L}=\frac{d}{d t} \vec{r} \times \vec{p}= & \vec{r}^{\prime} \times \vec{\rho}+\vec{r} \times \frac{d}{d t} \vec{p} \\
= & \vec{r}^{\prime} \times\left(m_{6} \vec{r}^{\prime}\right)+\vec{r} \times \overrightarrow{F_{s}} \\
= & 0+0 \\
& \left(\vec{r}^{\prime} \times \vec{r}^{\prime}\right),(\vec{r} \times \vec{r})
\end{aligned}
$$

Ansulw momertan (\vec{L}) abeat \vec{O} is carsturt

$$
\text { ft }(\vec{r}-\vec{a}) \times \vec{p}=-\vec{a} \times \vec{F}_{s} \neq 0 \text { in gereal. }
$$

Note $\vec{r} \perp \vec{L}$ so \vec{r} is alucys conturid
in the pline perp to \vec{L}.
thes orisin

$$
\begin{aligned}
& \vec{L}=L \hat{k} \quad L>0 \quad W L O G \\
& \vec{r}=r \cos (\theta) \hat{\imath}+r \sin \theta \hat{\jmath} \\
& \vec{r}^{\prime}=r^{\prime} \frac{\vec{r}}{r}+r(-\sin \theta \hat{\imath}+\cos \theta \hat{\jmath}) \theta^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
\vec{r} \times \vec{r}^{\prime} & =\vec{r} \times r(-\sin \theta \hat{\imath}+\cos \theta \hat{\jmath}) \theta^{\prime} \\
& =r^{2}(c \hat{\imath}+\operatorname{s\hat {\jmath }})(-s \hat{\imath}+c \hat{\jmath}) \theta^{\prime} \\
& =r^{2}\left(c^{2} \hat{u} \times \hat{\jmath}-s^{2} \hat{\jmath} \times \hat{\imath}\right) \theta^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& =r^{2}\left(c^{2}+c^{2}\right) \hat{\imath} \times \hat{\jmath} \theta^{\prime} \\
& =r^{2} \theta^{\prime} \hat{k} \\
L=|\vec{r} \times p| & =m r^{2} \theta^{\prime} \\
\theta^{\prime} & =\frac{1}{m} \frac{L}{r^{2}}
\end{aligned}
$$

Arole chinges faster as $n \rightarrow 0$.

$$
\frac{1}{2}|\vec{r} \times \vec{v} \Delta t|=\frac{1}{2}|\vec{r} \times \vec{p}| \frac{\Delta t}{m}=\frac{1}{2} \frac{L}{m} \Delta t
$$

is the oren of the triangle.

That is, in time Δt, the position vector sweeps out an area appeximatdy $\frac{L}{2 m} \Delta t$

Yep: equal $\Delta t \longleftrightarrow$ equal nae.

$$
\frac{d A}{d E}=\frac{1}{2} \mathrm{~L}
$$

Kepler 2: equal times \Rightarrow equal oren swept ant.
is excel corsenation of arguter novation.

