Where does this line intersect xy plane?

$$
\begin{array}{ll}
z=0 \Rightarrow t=\frac{1}{2} \quad & x=2+3=5 \\
y=-4+\frac{1}{2}=-\frac{7}{2} \\
(5,-7 / 2,0) &
\end{array}
$$

How to doscirbe plues:

In 3-d, every plane hus a unque orthogon! dinction.

We cull a vecter ortho to plene a normal uedor

$$
z=3
$$

 nomal vector:

$$
\langle 0,0,1\rangle
$$

What is it porp to? ull the vectos tarsent to the plane.

Tuke ay two poink in plane, form displacenent vector.

$$
\begin{aligned}
& P(3,5,3) \quad Q(2,-9,3) \\
& \overrightarrow{P Q}=(2-3,-9-5,3-3) \\
& =\langle-1,-14,0\rangle \\
& \langle-1,-14,0\rangle \cdot\langle 0,0,1\rangle=0
\end{aligned}
$$

Planos thruigh the origm:

$$
\begin{gathered}
\overrightarrow{O Q}=\langle x, y, z\rangle \\
O=\vec{n} \cdot \overrightarrow{O Q}=\langle a, b, c\rangle \cdot\langle x, y, z\rangle \\
a x+b y+c z=0
\end{gathered}
$$

\rightarrow equation of a plone thagh origon with nomal vecter $\langle a, b, c\rangle$.

Moe gerully:

$$
\begin{gathered}
\left.P\left(x_{0}, y_{0}, z\right)\right\rangle \quad \overrightarrow{P Q}=\left\langle x-x_{0}, y-y_{0}, z \cdot z_{0}\right\rangle \\
O=\vec{n} \cdot \overrightarrow{P(Q}=a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)
\end{gathered}
$$

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

\rightarrow equation of Pluse w/ nomal

$$
\vec{n}=\langle a, b, c\rangle
$$

thash $P\left(x_{0}, y, z_{0}\right)$

$$
a x+b y+c z=\frac{\left.a x_{0}+b y_{0}+c z_{0}\right]}{d}
$$

\rightarrow equation of a plue w/ round

$$
\langle a, b, c\rangle
$$

Hew may prameters to desable a plane?
two for the diect-on of cermul.
ore for which plue theree ponotes.

Almont set this by sones nenct nomuls

$$
\begin{aligned}
|\tilde{n}| & =1 \\
\langle a, b, c\rangle & \rightarrow 3 \text { pemms } \\
a^{2}+b^{2}+c^{2} & =1 \text { dican to two pems. }
\end{aligned}
$$

But there ae two unit unods

E.s. Find the plane thru

$$
\begin{aligned}
& P=(1,0,2) \quad Q=(-1,3,4) \quad R=(3,5,7) \\
& \vec{u}=\overrightarrow{P Q}=(-2,3,2) \\
& \vec{v}=\overrightarrow{P R}=(2,5,5) \\
& \vec{n}=\vec{u} \times \vec{v}=(15-10) \hat{\imath}-(-10-4) \hat{\jmath}+(-10-6) \hat{k} \\
&=5 \hat{\imath}+14 \hat{\jmath}-16 \hat{k} \\
& \vec{n} \cdot(\langle x, 4, z\rangle-\langle 1,0,2\rangle)=0 \\
& S(x-1)+14 y-16(z-2)=0 \\
& S x+14 y-16 z=5-32=-27
\end{aligned}
$$

E.g. Find line of intersection between

$$
x+y+z=1 \quad x-2 y+3 z=1
$$

