Orthogonal Projection.
The dot product measures, in some sense, how alike two vectors are.

An rare cons... .

I wart to write \vec{b} as a sum of two pieces. One is in the direction of \vec{a}.

The other is orthogonal to \vec{a}.

$$
\begin{aligned}
\vec{b} & =c \vec{a}+\vec{d} \quad \vec{d} \cdot \vec{d}=0 \\
\vec{b} \cdot \vec{a} & =c \vec{a} \cdot \vec{a}+\vec{d} \cdot \vec{a} \\
& =c|\vec{a}|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& c=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \\
& \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}+\vec{d}
\end{aligned}
$$

\rightarrow The orthogonal projection of \vec{b} auto \vec{a}.

$$
\operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}
$$

$$
\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}=\vec{b} \cdot\left(\frac{\vec{a}}{|\vec{a}|}\right) \frac{\stackrel{\rightharpoonup}{a}}{|\vec{a}|}
$$

unit vector version of \vec{a}

$$
\operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \quad\left|\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}}\right|=\left|\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right|
$$

It is the signal magnitudes of the orthagand projection

$$
\begin{aligned}
& \vec{b}=5 \vec{c}+2 j-6 \vec{k} \\
& \vec{a}=\vec{k} \\
& \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}=\vec{b} \cdot \vec{a} \vec{k}=-6 k \\
& \vec{a}=9 \vec{k} \\
& \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}=\frac{\vec{b} \cdot(9 \vec{k})(9 \vec{k})}{q^{2}} \\
& =(\vec{b} \cdot \vec{k}) \vec{k}=-6 \vec{k} \quad \text { still } \\
& -b=\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}=\vec{b} \cdot \vec{k}=-6 .
\end{aligned}
$$

Section 12.4 Cross Product

Warmup exercise: 2×2 determinant

$$
\begin{aligned}
& \vec{u}=\left\langle u_{1}, u_{2}\right\rangle \\
& \vec{v}=\left\langle v_{1}, v_{2}\right\rangle \\
& {\left[\begin{array}{c}
\vec{u} \\
\vec{v}
\end{array}\right]:=\left[\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right]}
\end{aligned}
$$

By definition,

$$
\left|\begin{array}{cc}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|=u_{1} v_{2}-u_{2} v_{1}
$$

\uparrow
need not be positive.
1)

$$
\left|\begin{array}{ll}
u_{1} & u_{2} \\
u_{1} & u_{2}
\end{array}\right|=u_{1} u_{2}-u_{2} u_{1}=0
$$

2) $\left|\begin{array}{ll}v_{1} & u_{2} \\ u_{1} & u_{2}\end{array}\right|=-\left|\begin{array}{ll}u_{1} & u_{2} \\ v_{1} & v_{2}\end{array}\right|$
\downarrow

$$
v_{1} u_{2}-v_{2} u_{1}=-\left(u_{1} v_{2}-u_{2} v_{1}\right)
$$

3)

$$
\begin{aligned}
& \vec{u}=\langle a, 0\rangle \\
& \vec{v}=\langle 0, b\rangle \\
& \left|\begin{array}{l}
\vec{u} \\
\vec{v}
\end{array}\right|=\left|\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right|=\underset{\text { aren of }}{a b} \\
& \text { parullel ogrm }
\end{aligned}
$$

But: if $a>0, b<0$

then $|a b|$ is the aren of the
porallelogan, but $\left|\begin{array}{l}\vec{u} \\ \vec{v}\end{array}\right|$ is negative

Fact: for all $2-d$ vectors
$\left|\begin{array}{l}\vec{u} \\ \vec{v}\end{array}\right|$ is, up to sign, the area of the parallelagun spaniard by \vec{u}, \vec{v}

It 13 positive if you tarn left to sext from \vec{u} to \vec{v}, and negative if you tom right to get from \vec{u} to \vec{v}.

Geometrically, $\left|\begin{array}{l}\vec{u} \\ \vec{u}\end{array}\right|=0$ because the ea is 0 .

There 3 a 3 -d version as well:

$$
\begin{aligned}
& \vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \\
& \vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \\
& \vec{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=u_{1}\left|\begin{array}{ll}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right| & -v_{2}\left|\begin{array}{ll}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right| \\
& +u_{3}\left|\begin{array}{ll}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right|
\end{aligned}
$$

$$
\vec{w} \underbrace{\vec{v}}_{\vec{u}} \underset{\rightarrow}{\Rightarrow}\left|\begin{array}{l}
\vec{u} \\
\vec{v} \\
\vec{w}
\end{array}\right| \quad \text { is, up to sisy }
$$

the arem of the parullelopiped spound by $\vec{u}, \vec{v}, \vec{w}$. It is positive if rickit handed (Demonstrute)

Cross Product:

$$
\begin{aligned}
& \vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle \\
& \vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle \\
& \vec{a} \times \vec{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle \\
& \text { Whew!. Why? }
\end{aligned}
$$

Now we multiply two vectors and obtain a vector in recoin. This is a very special $3-d$ operation.

$$
\begin{aligned}
\vec{a} \times \vec{a}= & \overrightarrow{0} \\
\vec{a} \times \vec{b}= & -\vec{b} \times \vec{a} . \\
\vec{a} \cdot(\vec{a} \times \vec{b})= & a_{1}\left(a_{1}, b_{3}-a_{3}, b_{2}\right) \\
& +a_{2}\left(a_{3} b_{1}-a_{1}, b_{3}\right) \\
& +a_{3}\left(a, b_{2}-a_{2}, b_{1}\right)=0
\end{aligned}
$$

\vec{a} is perpendicular to $\vec{a} \times \vec{b}$.
\uparrow seometry!

$$
\vec{b} \cdot(\vec{a} \times \vec{b})=-\vec{b} \cdot(\vec{b} \times \vec{a})=-0=0
$$

\vec{b} is perpendiculan to $\vec{a} \times \vec{b}$ also.

Key Propesty: $\vec{a} \times \vec{b}$ is perpedicule to both $\stackrel{\rightharpoonup}{a}$ and \vec{b}.

Miavonic for computirg, usang determinats

$$
\left|\begin{array}{ccc}
\vec{l} & \vec{\jmath} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \quad\left(a_{2} b_{3}-a_{3} b_{2}\right) \vec{u}
$$

