Section 12.2

Displacement Vectors

The displacements from C to D and fen A to B are the same.

If we translate C to A then D lauds on A.

We identify:

$$
\overrightarrow{C D}=\overrightarrow{A B}
$$

Land of vectors (displacencits)

Euclidean space (points)

Displacement vectors have a direction (mostly) and a length.
$|\overrightarrow{A B}|$ is just the distance from A to B.
The zero vector does not hue a direction.

Operations on vectors:

1) Vector addition

2) Scalar multiplication: $a>0, \vec{u} \neq 0$ a \vec{u} is the vector porullel to \vec{u} with length a $|\vec{u}|$

$a<0$: points in opposite divietion

$a \cdot \vec{O}=\vec{O}$ no. matter what a 3 .
3) Subtraction

$$
\begin{gathered}
\vec{u}-\vec{v}=\vec{u}+(-\vec{v}) \\
\xrightarrow{\vec{u}} \quad \hat{\rightharpoonup} \text { 供 }
\end{gathered}
$$

Addition is commutative

The zero vector 13 special:

$$
\overrightarrow{0}+\vec{u}=\vec{u}+\overrightarrow{0} \text { no matterulat } \vec{u} \text { is. }
$$

Note: the origin of yourncoordinate systems Cortesum is orbitray.
the zero vector (zero displacenat!) is a vac real thing.

Once you establish, coordinates, vectors sain Cortesm
coorduratos as well:

$$
\begin{aligned}
& P\left(x_{0}, y_{0}, z_{0}\right) \\
& Q\left(x_{1}, y_{1}, z_{1}\right) \\
& \overrightarrow{P Q}=\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle
\end{aligned}
$$

\rightarrow not standouds but used m text

It's just the difference in coordinates.

The geometric vector operations have very ratoral algebraic equivalents:

$$
\begin{aligned}
& \vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle \\
& \vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle \\
& \vec{a}+\vec{b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right\rangle \\
& c \vec{a}=\left\langle c a_{1}, c a_{2}, c a_{3}\right\rangle \\
& \vec{a}-\vec{b}=\left\langle a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right\rangle
\end{aligned}
$$

Prapaties:

$$
\begin{aligned}
& (\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{a}) \\
& c(\vec{a}+\vec{b})=c \vec{a}+c \vec{b} \\
& (c+d) \vec{a}=c \vec{a}+d \vec{a} \\
& c(d \vec{a})=(c d) \vec{a} \\
& \vec{a}+0=\vec{a} \quad 1 \quad \vec{a}=\vec{a}
\end{aligned}
$$

The length of a vector is the Eucinden leash of the displacement

$$
\begin{aligned}
|\vec{a}|= & \sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \\
& \left(\sqrt{\left(\Delta_{x}\right)^{2}+\left(\Lambda_{y}\right)^{2}+\left(\Delta_{z}\right)^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& |c \stackrel{\rightharpoonup}{a}|=|c||\vec{a}| \\
& |\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}| \text { ? Nope. } \\
& \underbrace{\vec{a}}_{\vec{a}}+\vec{b} \text { ? }
\end{aligned}
$$

Common operatives:

$$
\begin{aligned}
& \vec{u}=\langle\sqrt{5}, 2,4\rangle \\
&|\vec{u}|^{2}=5+4+16=25 \\
&|\vec{u}|=5 \\
& \frac{1}{5} \vec{u}=\left\langle\frac{\sqrt{5}}{5}, \frac{2}{5}, \frac{4}{5}\right\rangle \\
& \uparrow
\end{aligned}
$$

We say $\frac{1}{5} \vec{u}$ is a unit vector. It points parallel to \vec{u} but hus cunt
lest.
We give names to three unit vectors that point aloes the coondiule axes:

$$
\begin{aligned}
& \vec{\imath}=\langle 1,0,0\rangle \\
& \vec{\jmath}=\langle 0,1,0\rangle \\
& \vec{k}=\langle 0,0,1\rangle
\end{aligned}
$$

(standard basis vectors)
There depart an your coordinates.
O is special. \vec{L} is not.

$$
\begin{aligned}
\vec{a} & =\left\langle a_{1}, a_{2}, a_{3}\right\rangle \\
& =a_{1} \vec{\imath}+a_{2} \vec{j}+a_{3} \vec{k} .
\end{aligned}
$$

Other vectorial quantities

- velocity (m / s) The other pants
- acceleration (n / s^{2}) are "decoction"
- force $\left(\mathrm{kgm} / \mathrm{s}^{2}=\mathrm{N}\right)$

sad $t_{1} \rightarrow t_{0}$ ad set an instantanews velocity.

All the rules thus for also apply to These physical variations of doplicenent vedas

Components of Physical vectors

$$
\vec{v} \underbrace{\rightarrow}_{\vec{i}}<\vec{v} \quad|\vec{v}|=10 \mathrm{~km} / \mathrm{h}
$$

$$
\begin{aligned}
& \left|v_{1}\right|=|\vec{v}| \cos \left(40^{\circ}\right) \approx 7.7 \\
& \left|v_{2}\right|=|\vec{v}| \sin \left(40^{\circ}\right) \approx 6.4 \\
& v_{1}>0, \quad v_{2}>0 \text { also } \\
& \text { in this case. }
\end{aligned}
$$

$$
\vec{V} \approx 7.7 \vec{\imath}+6.4 \vec{\jmath}
$$

Forces are especially important

Statics: the sum of forces actins on a holy add to zero.

$$
\vec{T}_{1}+\vec{T}_{2}+\vec{F}=0
$$

$$
\begin{aligned}
\vec{T}_{2}= & \cos \left(30^{\circ}\right)\left|T_{2}\right| \vec{\imath} \\
& +\sin \left(30^{\circ}\right)\left|T_{2}\right| \vec{u}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{T}_{1}=-\cos \left(50^{\circ}\right)\left|\vec{T}_{1}\right| \vec{\imath} \\
&+\sin \left(50^{\circ}\right)\left|\overrightarrow{T_{1}}\right| \vec{v}
\end{aligned}
$$

$$
\vec{F}=-98 \vec{\jmath}
$$

\vec{l} comporent:

$$
\cos \left(30^{\circ}\right)\left|\vec{T}_{2}\right|-\cos \left(50^{\circ}\right)\left|\vec{T}_{1}\right|=0
$$

\vec{j} component:

$$
\sin \left(30^{\circ}\right)\left|\vec{T}_{2}\right|+\sin \left(50^{\circ}\right)\left|\vec{T}_{1}\right|=98
$$

$$
\begin{aligned}
& \left|\vec{T}_{2}\right|=\frac{\cos \left(50^{\circ}\right)}{\cos \left(30^{\circ}\right)}\left|\vec{T}_{1}\right| \\
& \quad\left[\tan \left(30^{\circ}\right) \cos \left(50^{\circ}\right)+\sin \left(50^{\circ}\right)\right]\left|\vec{T}_{1}\right|=98
\end{aligned}
$$

$$
\begin{aligned}
& \left|\vec{T}_{1}\right|=98 / \underbrace{\left[\tan \left(30^{\circ}\right) \cos \left(50^{\circ}\right)+\sin \left(50^{\circ}\right)\right]}_{1.137 \ldots=a} \\
& \left|\vec{T}_{1}\right|=86.1797 \ldots \\
& \left.\left.\left|\vec{T}_{2}\right|=\frac{\cos \left(50^{\circ}\right)}{\cos \left(30^{\circ}\right)} \right\rvert\, \vec{T}_{1}\right) \\
& \left|\vec{T}_{2}\right|=63,96 \ldots \\
& \vec{T}_{1}=-\cos \left(50^{\circ}\right)\left|\vec{T}_{1}\right| \vec{i}+\sin \left(50^{\circ}\right)\left|\vec{T}_{1}\right| \\
& \approx-55.395 \vec{i}+66.017 \overrightarrow{0} \\
& \vec{T}_{2}=55.395 \vec{i}+31.98 \vec{j}
\end{aligned}
$$

