Section 12.1

How to make Cartesian coordinates in 3 dimensions

1) pick an orisin, O
2) pick a unit distance
3) pick 3 matually perpendicular rays thrash onigh, and label x, y, z
(has a notion
 of perpadiculen!
4) The triple $(1,2,-3)$ encodes the point obtained by

- move in x direction 1 unit
- move my direction 2 units
- move in $-z$ direction 3 units.

These coordinates one linked to the geanety of 3-d Euclidem space.

There are other systans you night want to use in other applications, but these are a convenient default.

Distance between two points:

$$
c \quad[5,5) \quad[5=2=6
$$

$(1,3)$

$$
\begin{aligned}
& 4-1=3=a \\
& a^{2}+b^{2}=c^{2} \\
& 3^{2}+2^{2}=c^{2} \\
& 9+4=c^{2} \Rightarrow c=\sqrt{13}
\end{aligned}
$$

$$
\begin{aligned}
&\left(x_{1}, y_{1}\right) \\
& \Delta_{x}=x_{1}-x_{0} \\
& \Delta_{y}=y_{1}-y_{0} \\
& \operatorname{dist}^{2}=\Delta_{x}^{2}+\Delta_{y}^{2}
\end{aligned}
$$

In 3-d:

$$
0 \quad(x, y, z,)
$$

$$
\text { - }\left(x_{0}, y_{0}, z_{j}\right)
$$

$$
\begin{gathered}
\Delta z=z_{1}-z_{0} \\
\operatorname{dis}^{2}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2} \\
=\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{y}\right)^{2}+\left(z_{1}-z_{0}\right)^{2}
\end{gathered}
$$

$$
c^{2}=a^{2}+z_{0}^{2}=x_{0}^{2}+y_{0}^{2}+z_{0}^{2}
$$

Orientation.

Plones have two classes of cintescen coondinates

Probibly the $\xrightarrow[x]{4^{4}}$ ores feel wore famcion.

As analogars phenomeran in 3-d.

If the thing you ane coondicuticas lus right hunds in its we prefer right-handed coordinde systers.
a) use nisht hud (critical!)
b) lay pisky alang crositive
c) wotate luad cut il funges conl in dineation of prostie y-ax.s

d) thumb points alons positive z-axis.

Sulsets

- coordunte plares
xy-plare

$y z$-pluse $(x=0)$

$z x$-plo $\quad(y=0)$

(Notation: the projection of $\left(x_{0}, y_{0}, z_{0}\right)$ onto the x_{y}-plum is $\left(x_{0}, y_{0}, 0\right)$

More soon!

Spheres

The sphere of radius r cental at $P\left(x_{0}, y, z\right)$ is the set of points (x, y, z) satisfy

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}
$$

Special planes
$x=3$ (poullel to yz-plaee,

See test for mare Cyluders, multiple restrictions.

