Newton's Method (II)

Math 426

University of Alaska Fairbanks

September 9, 2020

Two Cases of Taylor's Theorem

Zeroth order (MVT):

$$f(x) = f(a) + f'(\xi)(x-a)$$
First order: (Linear Approximation) $f(x) = \frac{1}{\xi}$ is between x and a .

$$f(x) = \frac{1}{f(a)} + \frac{1}{f'(a)}(x-a) + \frac{1}{\xi} \frac{1}{f''(\xi)}(x-a)^2$$

$$f(x) = \frac{1}{\xi} \frac{$$

Suppose we approximate sin(x) by its first order Taylor polynomial centered at 0.

$$f(x) = \sin(x); \qquad f(0) = 0$$

$$f'(x) = \cos(x); \qquad f'(0) = 1 \qquad (x - a) + \frac{1}{2} f''(\frac{2}{2}) (x - a)^{2}$$

$$f(x) = f(a) + f'(a) (x - a) + \frac{1}{2} f''(\frac{2}{2}) (x - a)^{2}$$

$$sin(x) = sin(a) + sin'(a)(x - a) + \frac{1}{2} sin''(\frac{1}{2}) (x - a)^{2}$$

$$= 0 + 1 \cdot (x - a) + \frac{1}{2} sin''(\frac{1}{2}) (x - a)^{2}$$

$$= x + \frac{1}{2} sin''(\frac{1}{2}) x^{3}$$

Suppose we approximate sin(x) by its first order Taylor polynomial centered at 0.

$$f(x) = \sin(x);$$
 $f(0) = 0$
 $f'(x) = \cos(x);$ $f'(0) = 1$
 $f''(x) = -\sin(x)$

Taylor's theorem:

$$f(x) = f(0) + f'(0)(x - 0) + \frac{1}{2}f''(\xi)(x - 0)^2$$

Suppose we approximate sin(x) by its first order Taylor polynomial centered at 0.

$$f(x) = \sin(x);$$
 $f(0) = 0$
 $f'(x) = \cos(x);$ $f'(0) = 1$
 $f''(x) = -\sin(x)$

Taylor's theorem:

$$f(x) = f(0) + f'(0)(x - 0) + \frac{1}{2}f''(\xi)(x - 0)^2$$
$$f(x) = 0 + 1(x - 0) + \frac{1}{2}f''(\xi)(x - 0)^2$$

Suppose we approximate sin(x) by its first order Taylor polynomial centered at 0.

$$f(x) = \sin(x);$$
 $f(0) = 0$
 $f'(x) = \cos(x);$ $f'(0) = 1$
 $f''(x) = -\sin(x)$

Taylor's theorem:

$$f(x) = f(0) + f'(0)(x - 0) + \frac{1}{2}f''(\xi)(x - 0)^2$$
$$f(x) = 0 + 1(x - 0) + \frac{1}{2}f''(\xi)(x - 0)^2$$
$$\sin(x) = x - \frac{1}{2}\sin(\xi)x$$

where ξ is some number between 0 and x

$$\sin(x) = x - \frac{1}{2}\sin(\xi)x$$

First order Taylor polynomial:

$$P(x) = x$$

Remainder term:

$$R(x,\xi) = -\frac{1}{2}\sin(\xi)x^2$$

Suppose |x| < 1/2. How big is the error if we approximate sin(x) with its first order Taylor polynomial?

Suppose |x| < 1/2. How big is the error if we approximate sin(x) with its first order Taylor polynomial?

$$s in (x) = x - \frac{1}{2} sin(2) x^{2} |sin(2)| \le |sin(2)| \le |sin(2)| \times |sin(2)| \le |sin(2)| \times |sin(2)| \le |sin(2$$

Taylor's Theorem

Suppose f has k continuous derivatives on [a, b] and is k + 1 times differentiable on (a, b). Then there exists $\xi \in (a, b)$ such that $f(b) = f(a) + f'(a)(b-a) + \frac{1}{2}f''(a)(b-a)^2 + \dots + \frac{1}{k!}f^{(k)}(a)(b-a)^k + \dots$ Remainder term: $\frac{1}{(k+1)} \frac{5}{4} \frac{1}{6} \frac{1}{6}$

Compute the third order Taylor polynomial of $f(x) = e^x$ centered at x = 0 and estimate the error in approximating f(x) with it for $x \in [-1,1]$. In particular, estimate the value of e and give an bound on the error. $e = e^{f} = f(t)$

$$f(o) = e^{o} = 1$$

$$f'(x) = e^{x}; f'(o) = e^{o} = 1$$

$$f''(x) = e^{x}; f''(o) = 1$$

$$f'''(x) = e^{x}; f'''(o) = 1$$

Compute the third order Taylor polynomial of $f(x) = e^x$ centered at x = 0 and estimate the error in approximating f(x) with it for $x \in [-1,1]$. In particular, estimate the value of e and give an bound on the error.

$$f(o) = f'(o) = \dots = f''(o) = 1$$

 $f(x) = f(x) + f'(y)(x - 0) + \frac{1}{2}f''(y)(x - 0) + \frac{1}{3!}f''(y)(x - 0) + \frac{1}{3!}f''(y)(x - 0) + \frac{1}{3!}f''(y)(x - 0) + \frac{1}{2!}f''(y)(x - 0) + \frac{1}{2!}f'''(y)(x - 0) + \frac{1}{2!}f'''(y$

Compute the third order Taylor polynomial of $f(x) = e^x$ centered at x = 0 and estimate the error in approximating f(x) with it for $x \in [-1, 1]$. In particular, estimate the value of e and give an bound on the error.

Toylor poly
$$P(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{3!}x^3$$

 3^{nd} order Toylor poly
error: $\frac{1}{4!}e^{\frac{x}{2}}x^4$ $e^{\frac{x}{2}} - P(x) = \frac{1}{4!}e^{\frac{x}{2}}x^4$ between
 $e^{x} - P(x) = \frac{1}{4!}e^{\frac{x}{2}}x^4$ between
 0 and x

4! = 1.2.3.4

6.4 = 24 $f(x) = e^x$ centered at x = 0 and estimate the error in approximating f(x) with it for $x \in [-1, 1]$. In particular, estimate the value of e and give an bound on the error.

 $e^{X} - P(x) = \frac{1}{41}e^{2}x^{4}$ Oalx |e²| ≤ e' ≤ 3 x < [-1,] >> 2 < [-1,] 1.3x4 |e^x - P(x) ≤ 1.3x4

e= 2.667 ± 1/2

 $e^{x} = P(x) + error$

Compute the third order Taylor polynomial of $f(x) = e^x$ centered at x = 0 and estimate the error in approximating f(x) with it for $x \in [-1,1]$. In particular, estimate the value of e and give an bound on the error.

if xe E-1,1] levor 15 dix

 $e = |+|+\frac{1}{2}+\frac{1}{6}+\epsilon = 2.6667+\epsilon$ $|\epsilon|\leq \frac{1}{2}$

Taylor (first order):

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(\xi)(x-a)^2.$$

Linear approximation:

L(x) i3
Immediate
and
L(x)
$$L(a) = f(a) + f'(a)(x-a)$$

L(x) $L(a) = f(a) + f'(a) (a-a)$
if $L(a) = f(a) + f'(a) \cdot 0$
if $L(a) = f(a) + f'(a) \cdot 0$
 $f(a) = f(a)$
 $f(a) = f'(a)$
 $L(a) = f'(a)$
 $f(a) = f'(a)$

Taylor (first order):

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(\xi)(x-a)^2.$$

Linear approximation:

$$P(x) = f(a) + f'(a)(x - a)$$

Key properties:

$$P(a) = f(a) + f'(a)(a-a) = f(a)$$

Taylor (first order):

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(\xi)(x-a)^2.$$

Linear approximation:

$$P(x) = f(a) + f'(a)(x - a)$$

Key properties:

$$P(a) = f(a) + f'(a)(a-a) = f(a)$$

Derivative (with respect to x!)

$$P'(x) = 0 + f'(a)(1 - 0) = f'(a)$$

So P'(a) = f'(a).

Taylor (first order):

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(\xi)(x-a)^2.$$

Linear approximation:

$$P(x) = f(a) + f'(a)(x - a)$$

Key properties:

$$P(a) = f(a) + f'(a)(a-a) = f(a)$$

Derivative (with respect to x!)

$$P'(x) = 0 + f'(a)(1 - 0) = f'(a)$$

So P'(a) = f'(a). The value of and derivative of P(x) at *a* are the same as *f*'s

Newton's Method

Newton's Method (Formula)

Want to solve f(x) = 0. Initial guess X, Lincon approx montion $L(x) = f(x_{i}) + f'(x_{i})(x - x_{i})$ L(x) = 0? $f(x_1) + f'(x_1)(x - x_2) = 0$ $f'(x_{i})(x_{i}-x_{i}) = -f(x_{i})$ $x = x_1 - \frac{f(x_1)}{x_1}$ New $f'(x_i)$ guess

Newton's Method (Formula)

New
$$x = \begin{vmatrix} x_1 - \frac{f(x_1)}{f'(x_1)} \end{vmatrix} = \begin{pmatrix} x_1 - \frac{f(x_1)}{f'(x_1)} \end{vmatrix}$$

Now repearly Use Innearization at x_2
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \qquad x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$
 $x_3 = x_2 - \frac{f(x_2)}{f'(x_k)} \qquad x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$