Newton's Method (II)

Math 426
University of Alaska Fairbanks

September 9, 2020

Two Cases of Taylor's Theorem

First order: (Linear Approximation) $\longrightarrow\left\{\begin{array}{l}\text { is between }\end{array}\right.$ x and a.

Example
Suppose we approximate $\sin (x)$ by its first order Taylor polynomial

$$
\begin{aligned}
& \text { centered at } 0 \text {. } \\
& \text { centered at } 0 \text {. } \\
& \begin{array}{ll}
\qquad=0 & f(x)=\sin (x) ; \\
f^{\prime}(x) & =\cos (x) ; \\
f^{\prime \prime}(x) & =-\sin (x)
\end{array} \quad \begin{aligned}
\sin (0) & f(0)=0 \\
f^{\prime}(0) & =1
\end{aligned} \\
& f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(\xi)(x-a)^{2} \\
& \sin (x)=\sin (0)+\sin ^{\prime}(0)(x-0)+\frac{1}{2} \sin ^{\prime \prime}(\xi)(x-0)^{2} \\
& =0+1 \cdot(x-0)+\frac{1}{2} \sin ^{\prime \prime}(\xi)(x-0)^{2} \\
& =x+\frac{1}{2} \sin ^{\prime \prime}(\xi) x^{2}
\end{aligned}
$$

Example

Suppose we approximate $\sin (x)$ by its first order Taylor polynomial centered at 0.

$$
\begin{aligned}
f(x) & =\sin (x) ; & f(0)=0 \\
f^{\prime}(x) & =\cos (x) ; & f^{\prime}(0)=1 \\
f^{\prime \prime}(x) & =-\sin (x) &
\end{aligned}
$$

Taylor's theorem:

$$
f(x)=f(0)+f^{\prime}(0)(x-0)+\frac{1}{2} f^{\prime \prime}(\xi)(x-0)^{2}
$$

Example

Suppose we approximate $\sin (x)$ by its first order Taylor polynomial centered at 0.

$$
\begin{aligned}
f(x) & =\sin (x) ; & f(0)=0 \\
f^{\prime}(x) & =\cos (x) ; & f^{\prime}(0)=1 \\
f^{\prime \prime}(x) & =-\sin (x) &
\end{aligned}
$$

Taylor's theorem:

$$
\begin{gathered}
f(x)=f(0)+f^{\prime}(0)(x-0)+\frac{1}{2} f^{\prime \prime}(\xi)(x-0)^{2} \\
f(x)=0+1(x-0)+\frac{1}{2} f^{\prime \prime}(\xi)(x-0)^{2}
\end{gathered}
$$

Example

Suppose we approximate $\sin (x)$ by its first order Taylor polynomial centered at 0 .

$$
\begin{array}{rlrl}
f(x) & =\sin (x) ; & f(0) & =0 \\
f^{\prime}(x) & =\cos (x) ; & f^{\prime}(0) & =1 \\
f^{\prime \prime}(x) & =-\sin (x) &
\end{array}
$$

Taylor's theorem:

$$
\begin{gathered}
f(x)=f(0)+f^{\prime}(0)(x-0)+\frac{1}{2} f^{\prime \prime}(\xi)(x-0)^{2} \\
f(x)=0+1(x-0)+\frac{1}{2} f^{\prime \prime}(\xi)(x-0)^{2} \\
\sin (x)=x-\frac{1}{2} \sin (\xi) x
\end{gathered}
$$

where ξ is some number between 0 and x

How big is the error?

$$
\sin (x)=x-\frac{1}{2} \sin (\xi) x
$$

First order Taylor polynomial:

$$
P(x)=x
$$

Remainder term:

$$
R(x, \xi)=-\frac{1}{2} \sin (\xi) x^{2}
$$

Suppose $|x|<1 / 2$. How big is the error if we approximate $\sin (x)$ with its first order Taylor polynomial?

How big is the error?

Suppose $|x|<1 / 2$. How big is the error if we approximate $\sin (x)$ with its first order Taylor polynomial?

$$
\begin{aligned}
\sin (x)= & x-\frac{1}{2} \sin (\xi) x^{2} \quad|\sin (\xi)| \leqslant 1 \\
|\sin (x)-x| & =\frac{1}{2}|\sin (\xi)| x^{2} \\
& \leq \frac{1}{2} x^{2}
\end{aligned}
$$

If $\left\lvert\, x\left(<\frac{1}{2}\right.$ the error is $\leqslant \frac{1}{2} \cdot\left(\frac{1}{2}\right)^{2}=\frac{1}{8}\right.$

Taylor's Theorem

Suppose f has k cont nous derivatives on $[a, b]$ and is $k+1$ times differentiable on (a, b). Then there exists $\xi \in(a, b)$ such that

$$
f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{1}{2} f^{\prime \prime}(a)(b-a)^{2}+\cdots+\frac{1}{k!} f^{(k)}(a)(b-a)^{k}+
$$

$$
+\frac{1}{(k+1)!} f^{(k+1)}(\xi)(b-a)^{k+1}
$$

$k^{\text {th }}$ order polyronien
Taylor polynomial:
артак: $f\left(\partial_{0}\right) \approx f(0)+f^{\prime}(a)(b a)+$

$$
\ldots+\frac{1}{k!} f^{(k)}(a)(b-a)^{k}
$$

Remainder term:

$$
\left.(k-11!)^{(n+1)} \xi x\right)\left(b^{x}-a\right)^{x}
$$

Compute the third order Taylor polynomial of $f(x)=e^{x}$ centered a $x=0$ and estimate the error in approximating $f(x)$ with it for $x \in[-1,1]$. In particular, estimate the value of e and give an bound on the error.

$$
e=e^{\prime}=f(1)
$$

$$
\begin{aligned}
& f(0)=e^{0}=1 \\
& f^{\prime}(x)=e^{x} ; f^{\prime}(0)=e^{0}=1 \\
& f^{\prime \prime}(x)=e^{x} ; f^{\prime \prime}(0)=1 \\
& f^{\prime \prime \prime}(x)=e^{x} ; f^{\prime \prime \prime}(0)=1
\end{aligned}
$$

Compute the third order Taylor polynomial of $f(x)=e^{x}$ centered at $x=0$ and estimate the error in approximating $f(x)$ with it for $x \in[-1,1]$. In particular, estimate the value of e and give an bound on the error.

$$
\begin{aligned}
& f(0)=f^{\prime}(0)=\cdots=f^{\prime \prime \prime}(0)=1 \\
& f(x)=f(0)+f^{\prime}(0)(x-0)+\frac{1}{2} f^{\prime \prime}(0)(x-0)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(0)(x-0)^{3} \\
& f(x)=1+1 \cdot(x-0)+\frac{1}{2}\left(1(x-0)^{2}+\frac{1}{3!}\left(\frac{1}{3}\right) \frac{1}{4!}(x-0)^{4}\right.
\end{aligned}
$$

Example

Compute the third order Taylor polynomial of $f(x)=e^{x}$ centered at $x=0$ and estimate the error in approximating $f(x)$ with it for $x \in[-1,1]$. In particular, estimate the value of e and give an bound on the error.

Taylor poly $P(x)=\frac{L^{1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}}}{3^{\text {ad }} \text { order Toper poly }}$
error: $\frac{1}{4!} e^{\frac{\xi}{2}} x^{4}$

$$
e^{x}-P(x)=\frac{1}{4!} e^{\xi^{2} x^{4}} \quad 0 \text { and } x
$$

$$
\begin{array}{r}
4!=1 \cdot 2 \cdot 3 \cdot 4 \\
6 \cdot 4=24
\end{array}
$$

Compute the third order Taylor polynomial of $f(x)=e^{x}$ centered at $x=0$ and estimate the error in approximating $f(x)$ with it for $x \in[-1,1]$. In particular, estimate the value of e and give an

$$
\begin{gathered}
e^{x}-P(x)=\frac{1}{4!} e^{\xi x^{4}} \quad \text { between } \\
0 \text { and } x \\
x \in[-1,1] \Rightarrow \xi \in[-1,1] \quad\left|e^{\xi}\right| \leq e^{1} \leq 3 \\
\left|e^{x}-P(x)\right| \leq \frac{1}{4!} \cdot 3 x^{4}=\frac{1}{420} \cdot 3 x^{4}=\frac{1}{40 x^{4}}
\end{gathered}
$$

Example

$$
e=2.667 \pm \frac{1}{8}
$$

Compute the third order Taylor polynomial of $f(x)=e^{x}$ centered at $x=0$ and estimate the error in approximating $f(x)$ with it for $x \in[-1,1]$. In particular, estimate the value of e and give an bound on the error.

$$
e^{x}=P(x)+\text { error }
$$

if $x \in[-1,1] \quad \mid e$ roil $\leq \frac{1}{8} x^{4}$

$$
\begin{aligned}
e=1+1+\frac{1}{2}+\frac{1}{6}+\varepsilon= & 2.6667+\varepsilon \\
& |\varepsilon| \leqslant \frac{1}{8} \quad 1^{4}=1
\end{aligned}
$$

Linear Approximation
Taylor (first order):

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(\xi)(x-a)^{2}
$$

Linear approximation:

$$
\begin{aligned}
& L(x) \cdot 13 \\
& \text { linear } \\
& \text { and } \\
& L(a)=f(a) \\
& \text { "near" } \\
& P(x)=f(a)+f^{\prime}(a)(x-a) \\
& L(x) \quad L(a)=f(a)^{+} f^{\prime}(a)(a-a) \\
& \downarrow \\
& L^{\prime}(a)=f^{\prime}(a) \\
& =f(a)+f^{\prime}(a) \cdot 0 \\
& \begin{aligned}
& =f(a) \\
d L(x) & =0+f^{\prime}(a) \cdot 1
\end{aligned} \\
& =f^{\prime}(a) \\
& L^{\prime}(a)=f^{\prime}(a)
\end{aligned}
$$

Linear Approximation

Taylor (first order):

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(\xi)(x-a)^{2} .
$$

Linear approximation:

$$
P(x)=f(a)+f^{\prime}(a)(x-a)
$$

Key properties:

$$
P(a)=f(a)+f^{\prime}(a)(a-a)=f(a)
$$

Linear Approximation

Taylor (first order):

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(\xi)(x-a)^{2} .
$$

Linear approximation:

$$
P(x)=f(a)+f^{\prime}(a)(x-a)
$$

Key properties:

$$
P(a)=f(a)+f^{\prime}(a)(a-a)=f(a)
$$

Derivative (with respect to x !)

$$
P^{\prime}(x)=0+f^{\prime}(a)(1-0)=f^{\prime}(a)
$$

So $P^{\prime}(a)=f^{\prime}(a)$.

Linear Approximation

Taylor (first order):

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(\xi)(x-a)^{2} .
$$

Linear approximation:

$$
P(x)=f(a)+f^{\prime}(a)(x-a)
$$

Key properties:

$$
P(a)=f(a)+f^{\prime}(a)(a-a)=f(a)
$$

Derivative (with respect to x !)

$$
P^{\prime}(x)=0+f^{\prime}(a)(1-0)=f^{\prime}(a)
$$

So $P^{\prime}(a)=f^{\prime}(a)$.
The value of and derivative of $\mathscr{\prime}(x)$ at a are the same as f 's

Linear Approximation

Newton's Method

$$
\begin{aligned}
& f(x)=0 ? \\
& L(x)=0
\end{aligned}
$$

Want to solve $f(x)=0$. Use a linear approximation instead!

Newton's Method (Formula)
Want to solve $f(x)=0$.
Initial guess x_{1}
Linen approximation

$$
\begin{aligned}
& L(x)=f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right) \\
& L(x)=0 ? \quad f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x-x_{l}\right)=0 \\
& \\
& f_{\substack{\text { new } \\
\text { guess }}} \quad \begin{array}{l}
\left.x=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\right)
\end{array}
\end{aligned}
$$

Newton's Method (Formula)

$$
\begin{aligned}
& \begin{array}{l}
\text { new } \\
\text { guess }
\end{array} \\
& \left.w \text { repent. } x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\right) \\
& \text { Se linearication at } x_{2}
\end{aligned}
$$

$$
\left.\begin{array}{l}
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}
\end{array}\right\} x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

