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Two Cases of Taylor’s Theorem

Zeroth order (MVT):

First order: (Linear Approximation)
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Example

Suppose we approximate sin(x) by its first order Taylor polynomial

centered at 0.

f (x) = sin(x); f (0) = 0
f ′(x) = cos(x); f ′(0) = 1
f ′′(x) = − sin(x)

Taylor’s theorem:

f (x) = f (0) + f ′(0)(x − 0) + 1

2
f ′′(ξ)(x − 0)2

f (x) = 0 + 1(x − 0) + 1

2
f ′′(ξ)(x − 0)2

sin(x) = x − 1

2
sin(ξ)x

where ξ is some number between 0 and x
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How big is the error?

sin(x) = x − 1

2
sin(ξ)x

First order Taylor polynomial:

P(x) = x
Remainder term:

R(x , ξ) = −1
2
sin(ξ)x2

Suppose �x � < 1�2. How big is the error if we approximate sin(x)
with its first order Taylor polynomial?
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Taylor’s Theorem

Suppose f has k continuous derivatives on [a, b] and is k + 1 times

di↵erentiable on (a, b). Then there exists ξ ∈ (a, b) such that

f (b) = f (a) + f ′(a)(b − a) + 1

2
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Example

Compute the third order Taylor polynomial of f (x) = ex centered

at x = 0 and estimate the error in approximating f (x) with it for

x ∈ [−1, 1]. In particular, estimate the value of e and give an

bound on the error.
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Linear Approximation

Taylor (first order):

f (x) = f (a) + f ′(a)(x − a) + 1

2
f ′′(ξ)(x − a)2.

Linear approximation:

P(x) = f (a) + f ′(a)(x − a)

Key properties:

P(a) = f (a) + f ′(a)(a − a) = f (a)
Derivative (with respect to x!)

P ′(x) = 0 + f ′(a)(1 − 0) = f ′(a)
So P ′(a) = f ′(a).
The value of and derivative of P(x) at a are the same as f ’s
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Linear Approximation

The value of and derivative of P(x) at a are the same as f ’s

Linear Approximation (graphically):TEA.
f-Cx)



Newton’s Method

Want to solve f (x) = 0. Use a linear approximation instead!



Newton’s Method (Formula)
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Newton’s Method (Formula)
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