Recall
$f(x) \rightarrow$ contrucas
$f(x)=0$

Analysis of Bisection

Given an application of bisection:

1. How good an approximation is the result?
2. How much work is needed to compute the result?

Analysis of Bisection

Given an application of bisection:

$$
f\left(x_{\text {exact }}\right)=0
$$

1. How good an approximation is the result?
2. How much work is needed to compute the result?

Notation:

- a_{k}, b_{k} : the interval endpoints at step k
- $m_{k}=\left(a_{k}+b_{k}\right) / 2$: the midpoint of interval k
- $e_{k}=\xi x_{\text {exact }}-m_{k} \sum_{\text {the }}$ the absolute error at step k

$$
e_{k}=x_{\text {exact }}-m_{k}
$$

approximation of root

$$
\left|e_{k}\right|
$$

Convergence Rate

Convergence Rate

$$
\begin{aligned}
& \log _{\uparrow}(\mid \text { err } \mid)=m k+b \quad|\operatorname{err}| \sim C \alpha^{k} \\
& \ln \xrightarrow{\log _{2} \rightarrow \log _{1} 2} \begin{array}{lll}
\log _{510} \rightarrow \log _{1} 10
\end{array} \\
& \mid \text { err } \mid=e^{m k+b} \\
& =e^{m k} \cdot e^{b} \\
& =\left(e^{b}\right)\left(e^{m a}\right)^{k} \\
& m=\log (1 / 2) \text { ? } \\
& \alpha=e^{m} \\
& =e^{\log (1 / 2)} \\
& =\frac{1}{2}\binom{1}{!} \\
& =C \alpha^{k} \\
& |\operatorname{err}| \sim C\left(\frac{1}{2}\right)^{k}
\end{aligned}
$$

Convergence Rate

$$
\begin{aligned}
& \left|b_{2}-a_{2}\right|=\frac{1}{2}\left|b_{1}-a_{1}\right| \\
& \left|b_{3}-a_{3}\right|=\frac{1}{2}\left|b_{2}-a_{2}\right|=\frac{1}{2} \frac{1}{2}\left|b_{1}-a_{1}\right| \\
& =\left(\frac{1}{2}\right)^{2}\left|b_{1}-a_{1}\right| \\
& \left|b_{4}-a_{4}\right|=\left(\frac{1}{2}\right)^{3}\left|b_{1}-a_{1}\right| \\
& \left|b_{k}-a_{k}\right|=\left(\frac{1}{2}\right)^{k-1}\left|b_{1}-a_{1}\right|
\end{aligned}
$$

Convergence Rate

$$
\left|b_{k}-a_{k}\right|=\left(\frac{1}{2}\right)^{k-1}\left|b_{1}-a_{1}\right|
$$

error at step vs. $\left|b_{k}-a_{k}\right|$?

$$
\begin{aligned}
\text { ever } & \leq \frac{1}{2}\left(\frac{1}{2}\right)^{k-1}\left|b_{1}-a_{1}\right| \\
& =\left(\frac{1}{2}\right)^{k}\left|b_{1}-a_{1}\right|
\end{aligned}
$$

Labor per Digit

Gaining a digit of accuracy nears de ceasing the error by a factor of $\frac{1}{10}$

$$
\begin{aligned}
\left(\frac{1}{2}\right)^{\beta} & =\frac{1}{10} \\
\log _{2}\left(\left(\frac{1}{2}\right)^{\beta}\right) & =\log _{2}(1 / 10) \\
\beta \cdot(-1) & =\log _{2}(1 / 10) \\
& \approx \frac{\log _{2}(10)}{2.3} \\
\left(\frac{1}{2}\right)^{3.3} & =\frac{1}{10}
\end{aligned}
$$

Labor per Digit

$$
\begin{aligned}
& f(x)=x^{2} \\
& f(0)=0
\end{aligned}
$$

What can go wrong?

- Need to have a guess for the initial interval.
- Some (rare) root cannot be found: $F(x)=x^{2}$ never changes sign.
- Workload seems fair: every 3.3 steps we gain a digit. But we can do better!

Newton's Method (I)

Math 426
University of Alaska Fairbanks

September 4, 2020

Mean Value Theorem

Theorem

Suppose f is continuous on $[a, b]$ and differentiable op (a, b). Then there exists $\xi \in(a, b)$ such that

$$
f^{\prime}(\xi)=f(b)-f(a)
$$

MVT Rewritten

$$
\begin{gathered}
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a} . \\
f(b)=f(a)+f^{\prime}(\xi) \cdot(b-a) \\
f(x)=\underbrace{f(a)}_{\text {approximation }}+\underbrace{f(\xi) \cdot(x-a)}_{\text {error }}
\end{gathered}
$$

