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Analysis of Bisection

Given an application of bisection:

1. How good an approximation is the result?

2. How much work is needed to compute the result?

Notation:

� ak , bk : the interval endpoints at step k

� mk = (ak + bk)�2: the midpoint of interval k

� ek = �xexact −mk �: the absolute error at step k
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Convergence Rate
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Labor per Digit

Gaining a digit of accuracy means

decreasing the error by a factor of To
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What can go wrong?

� Need to have a guess for the initial interval.

� Some (rare) root cannot be found: F (x) = x2 never changes

sign.

� Workload seems fair: every 3.3 steps we gain a digit. But we

can do better!
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Mean Value Theorem

Theorem

Suppose f is continuous on [a, b] and di↵erentiable on (a, b).
Then there exists ξ ∈ (a, b) such that

f ′(ξ) = f (b) − f (a)
b − a .
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MVT Rewritten

f ′(ξ) = f (b) − f (a)
b − a .

f- (b) = fla) t f
'(g) . ( b -a)

f- (x) = fla) t f
'

CE) . (x -a)
- -
approximation error


