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Column perspecive on multiplication

A = �a1 a2 � an� x = ���
x1⋮
xn

���
Ax = x1a1 +� + xnan

B = �b1 � bk�
Then:

AB = �Ab1 � Abk�
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Row perspective on multiplication

B = ���
rT1⋮
rTm

���
yT = �y1 � ym�

yTB = y1rT1 +� + ynrTn
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Sample Linear Algebra Problem

Find x1, x2 and x3 such that

x1 + 2x2 + 3x3 = 1
4x1 + 5x2 + 6x3 = 0
7x1 + 8x2 + 0x3 = 2

A = ���
1 2 3
4 5 6
7 8 0

��� ; b = ���
1
0
2

���
Want to solve Ax = b.
If A has an inverse, A−1Ax = A−1x so x = A−1x. But finding A

−1 is
about n-times harder than solving Ax = b!
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Gaussian Elimination (Step 1: row reduction)

A = ���
1 2 3
4 5 6
7 8 0

��� ; b = ���
1
0
2

���
Perform row operations on A and b simultaneously to reduce A to
upper triangular form:

( *o*¥*) (⑦← upper triangular
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Gaussian Elimination (Step 2: back substitution)

U = ���
1 2 3
0 −3 −6
0 0 9

��� ; b′ = ���
1−4
3

���
Solve Ux = b′ instead.

①

4 t Lxz 1-3×3
=/
⇒ 4=-2

-3yz-Gxz=-4⇒-3xz=-tt6xz

-9×3--3=5×35437
⇒ 42=2



Row operations via matrix multiplication

Recall: in the first step of row reduction we added -4 copies of row
1 of A to row 2 and −7 copies of row 1 to row 3.

L1 = ���
1 0 0−4 1 0−7 0 1

��� L1A = ���
�1 0 0�A�−4 1 0�A�−7 0 1�A

���

�−4 1 0�A =?
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Row operations via matrix multiplication

Recall: in the second step of row reduction we added -2 copies of
row 2 of L1A to row 3.

L2 = ���
1 0 0
0 1 0
0 −2 1

��� U = L2L1A = ���
�1 0 0�L1A�0 1 0�L1A�0 −2 1�L1A

���
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Tidy Gaussian Elimination

Ax = b
L1Ax = L1b

L2L1Ax = L2L1b

U = L2L1A is upper triangular

b
′ = L2L1b.

New system to solve:
Ux = b′

Ux -- b
'
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Inverses of L matrices

L1 = ���
1 0 0−4 1 0−7 0 1

��� L
−1
1 = ���

1 0 0
4 1 0
7 0 1

���
Just change signs!

L
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0 1 0
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Why Gaussian Elimination Works

L2L1A = U; L2L1b = b′

Suppose x solves Ux = b′.
Ux = b′

L
−1
2 Ux = L−12 b′

L
−1
1 L
−1
2 Ux = L−11 L

−1
2 b′

L
−1
1 L
−1
2 L2L1Ax = L−11 L

−1
2 L2L1b

Ax = b
Let L = L−11 L

−1
2 . Then

A = LU
is the LU factorization of A.

If At b
then
Ux-- b
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LU Factorization

A = LU
where U is upper triangular, L is lower triangular and L has 1’s on
the diagonal.

L = L−11 L
−1
2

A mathematical miracle:

L = L−11 L
−1
2 = ���

1 0 0
4 1 0
7 2 1

���
Up to sign, L just contains the factors used in Gaussian
elimination. And U is the final reduction matrix from Gaussian
elimination. If you can do Gaussian elimination, then you can
do LU factorization.
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Discussion of mathematical miracle

L1 = ���
1 0 0−4 1 0−7 0 1

��� L2 = ���
1 0 0
0 1 0
0 −2 1

���

L = L−11 L
−1
2 = ���

1 0 0
4 1 0
7 2 1

���
vs:

L2L1 = ���
1 0 0−4 1 0
1 −2 1

���
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Solution via LU factorization

Want to solve
Ax = b.

1. Perform an LU factorization of A. Now want to solve

LUx = b
2. Solve

Lb′ = b
via back substitution.

3. Now want to solve
LUx = Lb′

or equivalently
Ux = b′.

Back substitution again!
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